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Abstract

Classical interatomic potentials are an important bridge between nano-scale and

meso-scale properties of materials, and facilitate an understanding of deformation

and phase transitions at the atomistic level. This work presents the development

of two semi-empirical interatomic potentials, one for the body-centered cubic metal

tungsten and another for multi-phase titanium-niobium alloys. Accurate density func-

tional theory calculations constitute large databases of forces, stresses and energies

to which the empirical models are fit using an evolutionary algorithm. Accuracy of

the potentials is verified by comparison with experiment and first-principles calcula-

tions for numerous structural, elastic and thermal properties. The models are used

to investigate structural phase transitions under high pressure, in the case of tung-

sten, and chemical disorder, in the case of titanium-niobium. The presented models

provide improved descriptions of these technologically important metals over existing

classical potentials.
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Chapter 1:

Essential Physics and Materials

Science

1.1 Introduction and Motivation

The development and improvement of materials is among the most important chal-

lenges in technological development. Models are a fundamental component of inno-

vation in any field, nowhere more so than in materials science and condensed-matter

physics. Modeling the real-world applicability of a material based on fundamental un-

derlying physics requires connecting nano-scale properties to life-sized performance,

and femtosecond-timescales to end-use lifespans. This is accomplished in small steps

using a variety of techniques to link electronic structure to crystalline properties,

crystalline properties to micron-scale structure, etc., with results of methods feeding

one another in either direction. This approach is often called multiscale modeling .

The present work focuses on bridging the gap between quantum mechanics and

mesoscopic physics. First-principles calculations of electronic structure are used to

develop semi-empirical models known as classical interatomic potentials, which can
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be used to model interactions of millions of atoms at a time. These models are used

to describe defect structures, phase transformations, plastic deformation and more.

Classical interatomic potentials were traditionally developed by choosing analytic

functional forms with a handful of free parameters determined by fitting directly to

experimental bulk data such as cohesive energy, lattice, and elastic constants. The

force-matching method of Ercolessi and Adams [1] has facilitated the development

of interatomic potentials based on ab initio calculations of relaxed crystallographic

defects, metastable structures, and other nonequilibrium configurations. Combined

with spline-based parameterization of constituent functions first used by Lenosky

et al. [2], this allows the development of empirical or semi-empirical interatomic

potentials trained to large portions of the ab initio potential-energy landscape with

minimal bias. The present work describes the development and application of two

such potentials, one for elemental tungsten and another for titanium-niobium alloys.

Tungsten is an exceptional transition metal exhibiting the highest tensile strength,

melting point, and elastic modulus of any pure metal and has important applications

in aerospace, energy and armament industries. Much interest has been focused on α-

W (bcc) and β-W (A15) nanostructures including nanorods[3, 4, 5], nanoparticles[6,

7, 8, 9], and thin films[10, 11, 12]. Due to the technological importance of tungsten,

classical interatomic potentials of various forms have been developed to study this

metal [13, 14, 15, 16, 17, 18, 19, 20]. The present work provides a more robust

potential consistent with previous classical and ab initio results across a range of

conditions in tungsten.

Titanium is also an important material in many modern industries. When alloyed

with bcc-stabilizing elements (so-called β alloys), the bcc β phase can be stabilized

at room temperature. One class of β alloys which has garnered much attention is

“gum metals,” which contain about 25 at.% of a primary β stabilizer and small
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amounts of other elements, e.g. Ta, Zr and O. These alloys have exceptional yield

strength, high ductility and low elastic modulus [21], and exhibit superelasticity [21,

22, 23, 24, 25], shape memory [26, 23] as well as martensitic [27, 28] and strain-

glass [19] transitions. The plastic deformation behavior of gum metals has been

explored with great interest in order to explain these mechanical properties. Proposed

mechanisms include dislocation-free deformation [21, 29], stress-induced martensitic

transitions [30, 31, 28], deformation twinning [30, 31] and conventional dislocation-

driven plasticity [32, 33].

Niobium is commonly used as the major β-stabilizer in gum metals, and Ti-Nb

alloys on their own show promise in biomedical [34, 35, 36] and orthodontic [37] appli-

cations, and are used as superconducting wires for electromagnets in MRI machines,

synchrotrons and tokamaks. The present work provides a classical interatomic poten-

tial for Ti-Nb alloys with focus on properties of the gum metal approximant Ti3Nb.

This work is organized into seven chapters: Chapter 1 contains the basic physics

and materials science relevant to testing and using interatomic potentials in metals

and alloys. Chapter 2 is dedicated to the fundamentals of density-functional theory

and its implementation in periodic metallic systems. Chapter 3 describes molecular

dynamics, its application to different statistical-mechanics ensembles, and some ba-

sic classes of interatomic potentials. Chapter 4 is devoted to the fitting algorithm

employed in the present work, its use with spline-based potentials, and a roadmap

for the trial-and-error process of developing flexible interatomic potentials. Chap-

ter 5 contains an interatomic potential for high-pressure tungsten, an assessment of

its accuracy through comparison with density-functional theory, and its application

to deformation twinning and the stabilization of an fcc allotrope. Chapter 6 con-

tains the main achievement of the present work, a novel empirical potential for the

titanium-niobium system, and its application to the effect of alloying on structural
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phase transitions. Chapter 7 contains concluding remarks and a brief discussion of the

future direction of developing embedded-atom-like potentials for metals and alloys.

The remainder of this chapter describes the materials science and condensed-

matter physics relevant to the development of force-models for crystalline metals.

Crystallography, elasticity, crystalline defects, statistical mechanics and phase transi-

tions are described in terms of interatomic forces and energies. Methods of atomistic

calculation are discussed where necessary.

1.2 Crystallography

This section provides the basic definition of crystalline lattices and bases, symme-

try groups, and the reciprocal lattice. An explanation of some common notation is

provided at the end.

1.2.1 Crystal lattices

A crystal is mathematically defined in 3-dimensional space by a set of 3 linearly

independent vectors, denoted {a}, which we term the primitive lattice vectors. Sites

RI in the lattice are then defined by the integers n1, n2, n3 such that

RI = n1a1 + n2a2 + n3a3, (1.1)

where the subscript I is shorthand for the integers {n}. This structure is referred to

as a Bravais lattice. For any given point satisfying Eq. 1.1, the locus of points in

real space which are closer to that point than all other lattice points is referred to as

the Wigner-Seitz cell of the lattice.

Many crystalline materials have atomic positions which themselves do not form a
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Bravais lattice. Such structures can be described by adding to the bravais lattice a

set of basis vectors which describe the position of atoms relative to the lattice points.

Clearly every different lattice site set of integers describing its position, but for

every crystal there exists a group, called the space group of the lattice, all operations

Ô from which satisfy

ÔRI = n′1a1 + n′2a2 + n′3a3 (1.2)

for all lattice points R, where {n′} are integers. These operations – called the space

group of the crystal – leave the infinite perfect crystal unchanged and can be de-

scribed by an orthonormal form to which we apply a shorthand notation following

Madelung[38]:

Ôr = α̂r + a ≡ {α|a}r. (1.3)

In this notation, α denotes the point group of the crystal, which is the set of all rota-

tion, reflection and inversion operations about the origin (which we have assumed to

be a lattice site) that leave the crystal unchanged while a represents pure translation

operations where a is any integer combination of the primitive lattice vectors. The

space group of the lattice translates directly to symmetries in the electronic structure

and thus plays a major role in determining the properties of materials. The symme-

tries are also exploited within electronic structure methods such as DFT (Chapter 2)

to increase computational efficiency.

The atomic arrangements of some crystal structures, e.g. hcp or ω-Ti, cannot

be described by lattice vectors alone. This is because their atomic positions do not

satisfy the definition of a mathematical Bravais lattice. To describe these features we

need so-called basis vectors which describe the position of each atom in a periodic cell

relative to the lattice point of that cell. Crystals which require a basis of more than

one atom often have a lower symmetry than their underlying Bravais lattice. The
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widely used DFT packages like vasp automatically determine the full space group of

an input crystal, so this effect of bases on symmetry need not be accounted for by

the user.
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Table 1.1: Standard cells and Brillouin zones for body-centered cubic, body-centered
tetragonal, hexagonally close-packed, orthorhombic, monoclinic and triclinic lattices.
Symmetry groups are given in the standard notation. High-symmetry paths are shown
in the irreducible wedge of each Brillouin zone; images are adapted from Setyawan
and Curtarolo [39], who provide tables of special-point coordinates and other useful
information.

Structure Standard Cell Brillouin Zone

body-centered
cubic

hexagonally
close-packed

face-centered
cubic

body-centered
tetragonal

orthorhombic

monoclinic

triclinic
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1.2.2 Reciprocal lattices

Given the primitive lattice vectors ai, another mathematical lattice can be defined

by the vectors bj defined by the dimensionless dot product

ai · bj = 2πδij, (1.4)

where δij is the usual Kronecker delta. Clearly the vectors bj have units of inverse

length, so this new lattice is called the reciprocal lattice. Points KJ in the reciprocal

lattice are defined by an integer linear combination of the bj, just as the RI are

defined in Eq. 1.1.

The Wigner-Seitz cell of the reciprocal lattice is known as the Brillouin zone.

Momentum-space integration is done within the symmetrically irreducible wedge of

this Brillouin zone (IBZ) determined by the symmetry group of the crystal. High-

symmetry paths used to visualize phonon and electron bands are taken from special

points in the IBZ. Standard unit cells, Brillouin zones and high-symmetry paths in

the IBZ of crystal structures relevant to the present work are shown in Table 1.1.

1.2.3 Common notation

Directions in a crystal are typically given in the basis of lattice vectors and denoted

by square brackets, with negative components written in “barred” form. For example,

given a set of lattice vectors ai, [12̄3] corresponds to the vector a1 − 2a2 + 3a3. Sets

of symmetry-equivalent directions are denoted by angle brackets. For example in a

simple cubic lattice the vectors [110], [11̄0] and [011̄] are all classified as 〈110〉 vectors.

Planes in a lattice are described in a similar way by writing in parenthesis the

reciprocals of the direct-coordinate intercepts of the plane in a unit cell. The plane
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(hkl) thus intercepts the boundary of the unit cell at a1/h, a2/k and a3/l. One can

see that (hkl) is actually a vector in the reciprocal lattice, representing the normal

vector of the plane. The indices h, k and l are known as Miller indices . Families of

symmetry-equivalent planes are given in curly brackets {hkl}.

Hexagonal crystals

Hexagonal crystals are often described in terms of an over-complete basis with three

vectors in the basal plane having an angle 2π/3 between one-another. Four indices are

thus used to describe planes and directions, given in general by [hkil], where h+k+i =

0 as a result of the over-completeness. This preserves a permutation symmetry in h,

k and i such that [112̄0], [21̄1̄0] and [12̄10] are all in the set 〈112̄0〉. The same

notation is utilized for lattice planes, where it is known as Miller-Bravias notation.

It should be noted that Miller-Bravais notation does not represent planar normals in

an overcomplete basis of the reciprocal lattice; it is an ad-hoc representation of the

three-index reciprocal vector (hkl) (which does represent the planar normal) written

(h, k,−h−k, l), which preserves the intercept-interpretation and is thus more intuitive

with respect to the direct lattice.

1.3 Elasticity

Elasticity is among the most important properties of materials, particularly those

relevant to the present work. This section describes the continuum theory of elasticity,

derives some important results and discusses the method of atomistic calculation used

here.

Consider an infinite homogeneous material with density ρ. Let u be the dis-

placement field inside the material such that a vector r0 in the undeformed material

9



Figure 1.1: Schematic showing stress tensor components σij in Cartesian coordinates.
Cartesian unit vectors ei are shown in red, and the action of an arbitrary stress vector
T across their corresponding planes is shown in blue. Original image by Sanpaz for
https://en.wikipedia.org/wiki/Cauchy_stress_tensor
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becomes at time t in the deformed material r(t) = c(t) + r0 + u(r, t), where c(t) is a

time-dependence originating from center-of-mass motion and u(r, t) is the displace-

ment field . Let the net force on the body as a whole to be zero and thus c(t) = 0. The

form of u depends of course on the external force field f and restorative force field

fr caused by internal stress . Consider the net force experienced by volume element

dV = dxdydz at position r and its resulting acceleration from newton’s second law:

(fr + f)dV = ρdV
∂2u

∂t2
. (1.5)

Let n be a unit vector specifying an arbitrary direction in the crystal. The stress

vector T(n) is defined to be the force per unit area which produces a force ∆f r on the

volume element ∆V at point r according to ∆f r = T(n)∆S, where ∆S is the area of

the plane defined by n and r. For an infinitesimal volume element

T(n) =
dfr
dS

. (1.6)

To fully specify the state of stress in a crystal at time t, one must know the stress

vector T(n)(r, t) for every n – of which there are infinitely many – at every point r –

of which there are also infinitely many. The stress theorem of Augustin-Louis Cauchy

simplifies the situation by positing the existence of a second-order tensor field ¯̄σ(r, t)

from which the stress vector T(n) can be derived according to

T(n)(r, t) = n · ¯̄σ(r, t). (1.7)

Clearly the components of ¯̄σ are given by the stress vectors along principal axes
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ei:

¯̄σ(r, t) =


T(e1)(r, t)

T(e2)(r, t)

T(e3)(r, t)

 . (1.8)

The net force on the volume element dV must be the difference[
T(ei)(r + dxiei, t)−T(ei)(r, t)

]
dSi of the action of stress vector T(ei) across the ex-

tent dxi of dV in direction ei, summed over i:

frdV =
∑
i

[
T(ei)(r + dxiei, t)−T(ei)(r, t)

]
dSi, (1.9)

which yields in the limit dxi → 0

fr =
∑
i

∂T(ei)

∂xi
=
∑
i

∂ ¯̄σ · ei
∂xi

= ∇ · ¯̄σ(r, t). (1.10)

Mechanical equilibrium thus produces “tensorized” Gauss’ law relationship wherein

the external force (vector) field acts as a source for the internal stress (tensor) field.

Mechanical equilibrium also requires the net torque on a volume element to be zero,

which means that the stress tensor is symmetric: σij = σji.

It is useful for experimentalists and theorists alike to relate the stress to the

deformation induced by the external force field, as opposed to the field itself. Within

the limits of linear elasticity (in the limit of small distortions |u| � 1 and |∇u| � 1),

the induced stresses take a Hooke’s law form generalized to three dimensions. The

spring constant analogues are the familiar elastic constants as derived below.

Since a volume element can be simultaneously pushed, pulled and sheared in

different directions, its “displacement” must take the form of a second rank tensor

¯̄ε called the strain. If the displacement field is constant over the extent of a volume

element, there is by definition no distortion and hence no induced stress within the
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volume element. From this it can be seen that εij should depend on the gradient

∇u of the displacement across dV . In the absence of internal torques, however, the

anti-symmetric part of ∇u, ωij = ∂ui
∂xj
− ∂uj

∂xi
, which represents rigid rotations of the

body, also cannot produce stresses. The strain tensor εij is therefore defined to be

the symmetric part of ∇u in the infinitesimal limit:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.11)

In general, a linear mapping between two second-rank tensors involves a fourth-

rank tensor which in three dimensions has 34 = 81 independent components. Here

Cijkl is the elastic stiffness tensor , which maps the strain components εkl to stress

components σij:

σij = Cijklεkl, (1.12)

where repeated indices are summed. Properties of the stress and strain tensors can

be used to determine symmetries of Cijkl and reduce the number of independent

components. From the symmetry of ¯̄σ and ¯̄ε one can see

Cijkl = Cjikl = Cijlk = Cjilk, (1.13)

which reduces the number of independent components to 36. Consider now the work

done by an infinitesimal strain dεij:

dw = σijdεij = Cijklεkldεij. (1.14)

When determining elastic constants experimentally or through simulation, strains

are very small and the system’s temperature is held constant. For an isothermal

deformation the work done by internal stress must be equal to the change in Helmholtz
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free energy F : (
∂F
∂εij

)
dεij = dF = σijdεij = Cijklεkldεij. (1.15)

Differentiating with respect to εkl,

∂2F
∂εij∂εkl

= Cijkl, (1.16)

and thus by the commutability of partial derivatives

Cijkl = Cklij. (1.17)

The above relation further reduces the number of independent components of Cijkl

to 21. The independent components of Cijkl are known as elastic constants .

1.3.1 Voigt notation

Dealing with a full fourth-rank tensor is cumbersome, but the symmetries discussed

above allow one to represent ¯̄σ and ¯̄ε as 6-component vectors and Cijkl as a 6×6

symmetric matrix. This is known as Voigt notation and requires a mapping of pairs

of indices to single indices according to the following equivalence:


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 =


σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

→



σ1

σ2

σ3

σ4

σ5

σ6


(1.18)

A slightly different form is taken for the strain vector. Consider the scalar quantity
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¯̄σ · ¯̄ε = σijεij. (1.19)

Momentarily dropping the summation convention, this can be split into diagonal and

off-diagonal contributions

¯̄σ · ¯̄ε =
∑
i

σiiεii +
∑
i

∑
j 6=i

σijεij, (1.20)

which by the symmetry of σij and εij can be written

¯̄σ · ¯̄ε =
∑
i

σiiεii + 2
∑
i

∑
j<i

σijεij =
∑
i

σiiεii +
∑
i

∑
j<i

σijγij, (1.21)

where the engineering shear strain has been defined as γij = 2εij. To preserve the

invariance of ¯̄σ · ¯̄ε the Voight strain vector is written as follows:


ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 =


ε1 ε6 ε5

ε6 ε2 ε4

ε5 ε4 ε3

→



ε1

ε2

ε3

γ4

γ5

γ6


. (1.22)

The same numbering scheme used here can be assigned to the sets of coordinate

indices {ij} and {kl} to Voigt indices such that
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[Cijkl] =



C1111 C1122 C1133 C1123 C1113 C1112

C2222 C2233 C2223 C2213 C2212

C3333 C3323 C3313 C3312

C2323 C2313 C2312

C1313 C1112

C1312



=



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66



(1.23)

In the work that follows, the 3×3 tensor formulation of strain is employed because

it can be used to distort a unit cell by simple matrix multiplication. All shear strains

will represent the true strain εi instead of the engineering strain γi. The elastic

constants themselves will be represented in matrix form via Voigt notation as shown

above. Equation 1.23 is the most general form of the elastic constant matrix, and

fewer than 21 components will be independent in any material with greater symmetry

than a general triclinic crystal.

Atomistic calculation of elastic constants

In the work that follows, a general method for calculating the elastic constants of a

crystal with monoclinic or higher symmetry is used. This method, first proposed by

Trinkle [40], involves simple deformations of a crystal which yield stresses given by
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Table 1.2: Strains and corresponding stresses used to determine elastic constants fol-
lowing the method of Trinkle [40]. One volumetric and six volume-conserving strains
yield an overdetermined linear system from which the elastic constants can be com-
puted. The top half of the table gives volumetric and volume-conserving orthorhombic
strains and the corresponding stress-strain relationships for compressive/tensile com-
ponent σii. The bottom half gives volume-conserving shear strains and corresponding
stress-strain relations for shear components of σij.

ε1 ε2 ε3 σ1/δ σ2/δ σ3/δ
δ δ δ C11 +C12 +

C13

C22 +C13 +
C23

C33 +C23 +
C13

δ −δ δ2

1−δ2 C11 − C12 C12 − C22 C13 − C23
δ2

1−δ2 δ −δ C12 − C13 C22 − C23 C23 − C33

−δ δ2

1−δ2 δ C13 − C11 C23 − C12 C33 − C13

δ2

4−δ2 0 0 ε4 = δ σ4/δ = C44

0 δ2

4−δ2 0 ε5 = δ σ5/δ = C55

0 0 δ2

4−δ2 ε6 = δ σ6/δ = C66

linear combinations of the Cijkl. Strains and corresponding linear combinations of

elastic constants are given in Table 1.2. Cell volumes are conserved for δ ≈ 0.001.

Using these strains with four or more values of δ, distributed symmetrically about

δ = 0, stress-strain relations can be determined by a linear fit. The coefficient ob-

tained in this fit corresponds to the entry on the right-hand side of Table 1.2. It is

important to use more than two points and to verify that the stress-strain relationship

is linear (visually or by examination of fitting error) for the considered values of δ.

1.4 Phonons

Phonons govern the behavior of a crystal at finite temperature and are closely related

to transformations between crystalline phases. This section describes the classical

harmonic crystal and the dynamical matrix. An atomistic method for calculating

phonon frequencies is described.

The hamiltonian function of a crystal is easily expressed through the momenta
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PI and positions RI of its N constituent atoms. At equilibrium all momenta in the

center-of-mass frame must necessarily be zero, so the total energy is determined by

the interaction of the atoms occupying the lattice sites of the crystal. Temporarily

assuming a two-body form for the potential energy between atoms I and J UIJ =

ϕ(RI −RJ) the lattice potential can be written

Ueq =
1

2

N∑
I=1

N∑
J 6=I

ϕ(RI −RJ), (1.24)

which describes the total energy of the crystal at zero temperature. When the tem-

perature is nonzero, the atoms of course begin to move. For small displacements

from equilibrium (or more precisely, small displacements of the atoms I from their

neighbors J for which UIJ ∼ kBT ), the potential can be approximated by a harmonic

well, and the motion of atoms described as an arrangement of balls and springs. This

is known as the harmonic approximation.

In the harmonic approximation, each atom I in a crystal is described by a lattice

vector R and a displacement field u(RI) such that its position is given by r(RI) =

RI + u(RI). This can be inserted into the potential energy Utot and expanded in

a Taylor series for each cartesian component. The expansion is centered around

rIJ = RI −RJ with small displacement u(RI)− u(RJ). The total potential energy

is written

Utot =
1

2

∑
ϕ(rIJ) +

1

2

∑
(u(RI)− u(RJ)) · ∇ϕ(rIJ)

+
1

4

∑
((u(RI)− u(RJ)) · ∇)2 ϕ(rIJ) + . . . ,

(1.25)

but the linear vanishes because net forces must be zero at lattice sites. Dropping
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terms higher than second-order yields Utot = Ueq + Uharm where

Uharm =
1

4

∑
((u(RI)− u(RJ)) · ∇)2 ϕ(rIJ)

=
1

4

∑
(uµ(RI)− uµ(RJ))

(
∂2ϕ(rIJ)

∂rµ∂rν

)
(uν(RI)− uν(RJ)) .

(1.26)

The last line above was obtained by expanding the squared dot product and rearrang-

ing, bearing in mind that u is independent of rIJ . This form inspires the definition

Dµν(rIJ) =

(
∂2ϕ(rIJ)

∂rµ∂rν

)
(1.27)

but relied on the assumption of a two-body interaction, a very limiting assumption

when building empirical interatomic potentials. The harmonic energy can be written

in a more general form capable of dealing with many-body interaction energies:

Uharm =
1

2

∑
uµ(RI)Dµν(RI −RJ)uν(RJ). (1.28)

Note that in this form Dµν(RI −RJ) is no longer the matrix of second partials of

the pair potential but rather of the exact interaction potential U (hence the prefactor

of 1/2 instead of 1/4). It is often called the force constant matrix, as it plays the

same role as a spring constant in Hooke’s law.

Now consider the equation of motion for the atom I:

MI
∂2uµ(RI , t)

∂t2
= − ∂Uharm

∂uµ(RI , t)
= −

∑
RJ ,ν

Dµν(RI −RJ)uν(RJ , t). (1.29)

An oscillatory ansatz for the time-dependence of u is now taken:

uµ(RI , t) = εµe
i(k·RI−ωt) (1.30)
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Figure 1.2: Anharmonic origins of thermal expansion. The Lennard-Jones (anhar-
monic) potential is shown in blue and a harmonic potential having the same curvature
at the equilibrium bond length is imposed as a dashed line. Orange shaded regions
represent the energetic filling at temperature T . The harmonic potential is symmet-
ric about the equilibrium bond length so the average position of an atom does not
change with T . The anharmonic potential softer at higher separation, so the average
interatomic distance increases with T .

which yields, noting that D(−R) = D(R), the following eigenvalue equation:

MIω(k)2εµ =
∑
RJ ,ν

Dµν(RJ −RI)ενe
ik·(RJ−RI) = Dµν(k)εν . (1.31)

The Fourier transform Dµν(k) of Dµν(R) is known as the dynamical matrix . Its

eigenvalues are related to the phonon frequencies and the eigenvectors εµ are the

corresponding normal modes. The wave-vector k lives in reciprocal space, and the

eigenvalue equation must be solved for every point in the Brillouin zone to fully

describe the phonons. Nonetheless, the problem of describing crystalline excitations

has been boiled down to an exercise in linear algebra.

1.4.1 Thermal expansion

The harmonic approximation is generally only valid at infinitesimal temperatures

because inter-atomic forces are typically stronger at separations below the equilibrium
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bond distance than above. Such an “anharmonic” potential means the atoms spend

more time above the equilibrium separation than they do below it. This is manifest in

the bulk material by thermal expansion. Figure 1.4.1 demonstrates the anharmonic

origin of thermal expansion for the Lennard-Jones potential (see Section 3.3).

1.4.2 Atomistic calculation of phonons

Computing the k-dependent eigen-frequencies ω(k) with an atomistic method requires

a full determination of the force-constant matrix Dµν(RI −RJ) = ∂2Utot/∂rµ∂rν |rIJ .

This can be done using a finite-difference approximation to the derivatives as follows:

∂2Utot
∂rµ∂rν

≈ Utot(rIJ + eµ∆) + Utot(rIJ + eν∆)− 2Utot(rIJ)

∆2
, (1.32)

where eµ is one of three cartesian unit vectors. A central-difference approximation

is typically used in real applications for accuracy. Since calculating total energy

can be costly (i.e. with first-principles methods), most codes implementing this so-

called “small displacement” method, such as PHON [41] or the Atomic Simulation

Environment (ASE) [42], will utilize the crystal symmetry to determine the minimal

number of directional derivatives required to fully describe Dµν . The dynamical

matrix is then calculated and diagonalized on a set of k-points arranged in a grid or

path in the Brillouin zone and ω(k) is interpolated between these points.

1.5 Defects in Crystals

1.5.1 Point defects

Point defects considered in the present work come in two forms: self-interstitial atoms

(SIAs) and vacancies. SIAs are atoms of the same chemical species as the host crystal
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with positions in-between lattice sites. Many stable SIA configurations have nearest

neighbor positions corresponding to a high-symmetry polygon; these sites are named

according to the polyhedra. Another class of SIAs are the so-called “dumbbell” or

“split” configurations where a lattice site is replaced by two atoms separated along a

given direction. Dumbbell configurations are named according to the direction along

which the lattice point is split. The formation energy of an SIA atom in a base crystal

with N atoms and cohesive energy Ecoh is given by

ESIA
f = ESIA

tot − (N + 1)Ecoh. (1.33)

SIA formation energies in metals tend to be on the order of a few eV. Geometries

of SIAs in hcp and bcc crystals are shown in Table 1.3 and Table 1.4 respectively.

Positions are given in direct coordinates.

Vacancies are lattice sites in a crystal without an occupying atom. Most basic

crystals have only one type of vacancy, but phases with distinct sublattices (e.g.

ω-Ti) have more. The vacancy formation energy is calculated similarly to the SIA

energy:

EV ac.
f = EV ac.

tot − (N − 1)Ecoh. (1.34)

Atomistic calculation of point-defect energies is a simple process of inserting or

removing an atom at the appropriate location and relaxing the structure. Supercells

must be used, and formation energies should be checked versus supercell size to ensure

that the defects are not interacting with themselves across the periodic boundary.
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Table 1.3: Self-interstitial defects for HCP. Direct coordinates are given for the acute
(first-quadrant) hexagonal HCP cell and GGA-DFT formation energies are presented
for titanium. Dumbell structures involve splitting an atom into two, displacing each
by the coordinates given but in opposite directions. Atoms from the base crystal are
shown in green and defect atoms in orange.

d1 d2 d3

Tetrahedral 0 1/6 1/6

Octahedral 1/2 1/3 1/4

Crowdion 0 1/12 1/4

Basal
Tetrahedral

0 1/6 0

Basal
Octahedral

1/2 1/3 0

Basal
Crowdion

1/2 1/4 0

[0001]
Dumbell

0 0 1/6

[112̄0]
Dumbell

1/6 1/3 0
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Table 1.4: Self-interstitial defects for BCC. Direct coordinates are given for the stan-
dard cubic BCC cell and GGA-DFT formation energies are presented for niobium.
Dumbell structures involve splitting an atom into two, displacing each by the coor-
dinates given but in opposite directions. Atoms from the base crystal are shown in
grey and defect atoms in red.

d1 d2 d3

〈001〉
Dumbell

1/3 0 0

〈011〉
Dumbell

1/3 1/3 0

〈111〉
Dumbell

1/3 1/3 1/3

Crowdion 1/4 1/4 1/4

Octahedral 1/2 1/2 0

Tetrahedral 1/4 1/2 0

1.5.2 Planar defects

Planar defects are disturbances to a local crystal structure across an entire lattice

plane. In the present work, three types of planar defects are considered: free surfaces,

generalized stacking faults and twin boundaries.

Free surfaces

Free surfaces are planes of a crystal exposed to vacuum. Atomistic determination of

free surface energies typically involves what is known as a “slab” calculation, where
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Figure 1.3: Schematic of a free-surface slab calculation with periodic boundary con-
ditions.

a supercell containing a large region of vacuum is periodically repeated in three di-

mensions. Slab calculations contain two free surfaces which, if the cell is properly

constructed, are identical.

Figure 1.5.2 provides a schematic for a slab calculation of a free surface. the

quantity d12 represents the distance between the first two atomic layers. This distance

often contracts upon relaxation. The energy of a free-surface is computed for a slab

calculation as:

Esurf =
Esurf
tot −NEcoh

2Asurf
, (1.35)

where Asurf is the area of the exposed surface and N is the number of atoms in the

supercell.

1.5.3 Generalized stacking faults

Stacking faults in crystals are planes in which the equilibrium stacking order of atomic

planes is disrupted. For example, if the equilibrium stacking is ABABAB, where the

set AB can be thought of as a periodic unit in the stacking direction, then the sequence
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ABABCBCB contains a stacking fault in which two halves of the crystal have been

displaced with respect to one another.

A generalized stacking fault (GSF) treats the relative displacement of two halves

of a crystal as arbitrary. One typically computes the GSF energy γ(ξ) as a function

of relative displacement ξ. Stable stacking faults are represented by local minima in

γ(ξ) which lie higher than γ(ξ = 0).

Atomistic calculation of stacking faults can proceed similarly to the free-surface

calculation by using two slabs of a crystal displaced relative to one another. A more

efficient method, however, involves “tilting” the supercell while leaving atomic po-

sitions unchanged. This is accomplished by changing the supercell vector that is

initially normal to the stacking fault plane as follows:

a3(ξ) = a0
3 + ξa0

1, (1.36)

where it is assumed that a0
3 is normal to the stacking fault plane and a0

1 is the direction

of displacement in the plane. A diagram of how the “tilt” method produces a GSF

is shown in Figure 1.5.3.

The GSF energy γ is computed as a function of relative displacement ξ in the tilt

method according to

γ(ξ) =
EGSF
tot (ξ)−NEcoh

AGSF
, (1.37)

where AGSF is the area of the stacking fault plane in the supercell and N is again

the number of atoms. As such, γ(ξ) is periodic with unit period. Figure 1.5.3 shows

low-index stacking faults geometries for (a) bcc and (b) hcp as considered in the

present work. All structures correspond to ξ = 1/2. Atoms are color-coded according

to local crystal structure by the method of adaptive common-neighbor analysis as

implemented in ovito[43, 44], where blue is bcc, red is hcp and white corresponds
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Figure 1.4: Schematic of the “tilt” method for computing the generalized stacking
fault energy. The supercell vector a3, initially normal to the stacking fault plane, is
tilted in the direction if displacement (a1) while cartesian positions of atoms are left
unchanged. This produces a single stacking fault in the supercell, where the upper-
and lower-most regions of the cell interact across the fault.

to the atoms on the fault boundary.

1.5.4 Twin boundaries

Twins are micro-structural regions of the same structure and sharing a lattice plane

called the twinning plane, across which they are related by reflection. The direction

of effective shear and the twinning plane define the twin. An example is shown in

Fig. 1.5.4 for the bcc {112}〈111〉-type twin. Twinning is one of the major modes

of deformation exhibited by a crystal lattice; when twins are formed upon straining

they are referred to as deformation twins .

1.5.5 Dislocations

Dislocations are topological line-defects in crystals and are the primary mechanism of

plastic deformation in solids. They can be uniquely specified with two vector quan-
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Figure 1.5: Geometries of low-index stacking faults considered in the present work.
Body-centered cubic geometries shown for the (a) {110}〈111〉 and (b) {112}〈111〉
faults. The prismatic stacking fault of hcp is shown in (c) easy and (d) hard configu-
rations, which correspond do a shift between different pairs of planes in the stacking
sequence as shown in the inset of (d).
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Figure 1.6: (112̄)[111] twin in the bcc lattice. Base crystal atoms are shown in
grey, twin atoms in blue and boundary atoms in orange. The formation of a twin
corresponds to a reflection across the twin boundary (112̄), which creates an effective
shear in the [111] direction.

tities: a line-sense ξ and a burgers vector b. The line-sense specifies the direction

in which the dislocation line points, while the burgers vector represents the direction

and amount of distortion of the perfect crystal around the dislocation line.

The burgers vector is defined using the concept of a Burgers circuit, a sequence

of primitive lattice vectors which defines closed circuit through a perfect crystal.

Traversing the same path in a crystal which contains a dislocation inside the circuit

will require one more displacement, b, to return to the original lattice site. The

Burgers circuit and Burgers vector are shown in Figure 1.5.5 by small and large

arrows, respectively.

The orientation of unit vector ξ with respect to b determines the character of the

dislocation and thus the form of displacement caused by it. Figure 1.5.5 shows the

two fundamental types of dislocation: edge (left), where b·ξ = 0 and screw (right),

where b×ξ = 0. Clearly, the displacement of the surrounding crystal is parallel to

the burgers vector for screw dislocations and orthogonal to it for edge dislocations.

Multiple burgers circuits around a screw dislocation will “spiral” up the lattice planes

orthogonal to the line-sense. Contrarily, each successive Burgers circuit around an

edge dislocation moves a sample point onto another lattice plane which is parallel
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to the line-sense. In both cases this imagined motion is antiparallel to the Burgers

vector.

Studying the structure of dislocations, both at the atomic level and microstruc-

tural level, is a major piece of materials science and metallurgy. Linear elasticity

theory is used as a starting point for the understanding of this structure. For a screw

dislocation, imagine a cylinder whose axis is aligned to the dislocation line sense and

Burgers vector, taken to be along ẑ. Solving the continuum elasticity equations at

equilibrium subject to the boundary conditions of discontinuity at the cut (placed on

the positive x-axis):

lim
ε→0

[uz(x, ε, t)− uz(x,−ε, t)] = b, (1.38)

for x > 0, yields a displacement along the z direction given by

uscrewz (x, y) =
b

2π
tan−1

(y
x

)
. (1.39)

For an edge dislocation, leaving ξ along ẑ and placing b along x̂, the displacement

components in the x− y plane can be shown to be:

uedgex (x, y) =
b

2π

[
tan−1

(y
x

)
+

xy

2(1− ν)(x2 + y2)

]
uedgey (x, y) = − b

2π

[
1− 2ν

4(1− ν)
ln(x2 + y2) +

x2 − y2

4(1− ν)(x2 + y2)

]
,

(1.40)

where ν is the Poisson ratio and elastic isotropy has been assumed. Edge dislocations

are clearly more complex, especially for anisotropic materials where these expressions

are inaccurate even far from the core. These elasto-static solutions can be be used as

starting points for atomistic calculations of core structure, as will be discussed further

in subsequent chapters where the issue of anisotropy will be avoided by considering

only screw dislocations.
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Figure 1.7: Schematic depiction of edge and screw dislocations in a single crystal.
Large arrows represent the burgers vector b. Small arrows represent the burgers
circuit used to calculate b. While the burgers vector for a particular dislocation is
constant, the line sense vector ξ is tangent to the dislocation at all points. Figure
adapted from Passchier and Trouw [45]

Atomistic calculation of dislocation core structures

A variety of techniques exist for determining dislocation core structures from atomistic

total-energy methods. In the present work such structures are only considered using

classical molecular dynamics, enabling the use of large simulation cells. These cells

are typically 100 lattice constants in dimension orthogonal to the burgers vector, with

the dislocation running through the center. Periodic boundary conditions are only

used parallel to the dislocation line. Atoms are displaced according to Equation 1.39

and a cylindrical region of ∼ 40 lattice parameters in radius, concentric with the

dislocation, is relaxed to obtain the core structure.

Differential displacement maps

Dislocation core structures are often visualized using so-called differential displace-

ment maps of Vitek et al. [46]. Atoms are plotted in a plane whose normal vec-
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tor is typically parallel to the dislocation line-sense and connected to neighbors by

vectors. The magnitude and direction of vectors are determined by the relative dis-

placement of atoms from their positions in the ideal crystal. Lengths are scaled such

that the maximal relative displacement corresponds to a vector which touches both

atoms. For ordinary dislocations, this maximal displacement occurs for those atoms

nearest the core. A complete circuit of vectors arranged tail-to-tip must contain a

total displacement of |b| for ordinary dislocations or |b/2| for partial dislocations in

hcp. Differential displacement maps presented here were constructed using the utility

ddplot [47].

1.6 Statistical Mechanics

This section outlines the classical statistical mechanics as it relates to thermodynamics

and molecular dynamics simulation.

Statistical mechanics connects the behavior of macroscopic systems with that of

their atomic or molecular constituents by averaging over all possible combinations of

microscopic states. The present development of statistical mechanics will follow the

treatment of Tadmor and Miller[48].

Consider a general Hamiltonian which is dependent only on the positions qi and

momenta pi of the constituent particles:

H =
1

2

N∑
i=1

p2
i

2mi

+ V ({qi}), (1.41)

where V ({qi}) is the total potential energy of the system. The set of positions and

momenta, which instantaneous microstate of the system, are mutually coupled and

time-dependent. In classical terms, the initial conditions determine the precise tra-

jectory of the system in phase space. When one wants to measure some macroscopic
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observable A, they generally cannot know the precise initial positions and momenta

of every particle in the system. So, while in theory a value can be assigned to the

macroscopic variable given the microscopic variables, A = A({qi}, {pi}), a probabilis-

tic approach must be taken to connect these values to an observation. The simplest

approach is to take an average of A({qi}, {pi}) over all possible sets of positions and

momenta. This is called the phase average, denoted by angle brackets (not to be

confused with the expectation value from quantum mechanics). Henceforth a con-

catenated notation where ({qi}, {pi}) = (q,p) is employed. If there are Ω accessible

microstates, the phase average of A is given by

〈A〉 =
1

Ω

Ω∑
j

A(qj,pj). (1.42)

Taking Ω→∞ will give us an integral in phase space, but one must be careful only

to sample those microstates which are allowed by the externally applied constraints,

e.g. finite temperature or volume. This is done through an integral kernel f(q,p)

which represents the probability density for the system to occupy the point in phase

space at (q,p). Integrating over all of phase space must of course find every allowable

initial condition. This produces the normalization condition for f :

∫
f(q,p)dqdp = 1, (1.43)

and the phase average is given by

〈A〉 =

∫
A(q,p)f(q,p)dqdp. (1.44)

The form of the average (i.e. the distribution function) depends on the degrees of

freedom of the system under consideration. There are three major averaging schemes,
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or ensembles, that are discussed here: microcanonical (NVE), canonical (NVT)

and grand canonical (µVT). The abbreviations refer to which macroscopic variables

constrained to be constant and will be discussed further.

1.6.1 Microcanonical Ensemble

A system which in which the total energy E, volume V and number of particles N

are fixed is referred to as a microcanonical or NVE ensemble. While the micro-

state refers to the configuration of constituents (i.e. their instantaneous positions

and momenta), the macro-state refers to the values of macroscopic thermodynamic

quantities E, V and N .

The microcanonical distribution function has a simple form that’s manifest from

the requirement of constant energy. If H(q,p) is the hamiltonian for a system of

N particles, again where q = {qi} and p = {pi} are shorthand for all positions

and momenta, integral kernel must pluck out those points in phase space where

E = H(q,p). By inspection,

fNV E(q,p) =
δ(E −H(q,p))∫

δ(E −H(q,p))dqdp
, (1.45)

where of course the denominator enforces the normalization condition. The most

notable feature here is that all microstates are equally probable. Taking the energies

Ei to be discrete, the average internal energy U = 〈H〉 is given by

U =
1

D(E)

∫
H(q,p)δ(E −H(q,p))dqdp, (1.46)

where the density of states D(E) has been defined as the denominator of Equation

1.45, which has dimensions of (distance × momentum)3N / energy. D(E)dE is a

measure of the volume of accessible phase space for which H(q,p) ∈ [E,E + dE].
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Both integrals can be easily performed; one finds D(E) = Ω, where Ω is the number

of discrete states, and

U =
1

Ω

Ω∑
i

Ei =
Ω∑
i

piEi. (1.47)

The probability of a system occupying a particular micro-state i is given very

simply for the NVE ensemble by pi = 1/Ω. This is an expression of the fundamental

assumption of thermal physics: that a closed system is equally likely to be in any of

the quantum states accessible to it.

Now consider an arbitrary division of a closed system into two subsystems, a and

b, with number of particles N = Na+Nb and internal energies related by E = Ea+Eb.

If the systems cannot exchange particles, each will have a density of states given by

its energy. The DOS of the entire system for a fixed value of Ea is given by the

product Da(Ea)Db(E − Ea). Since the value of Ea cannot be specified, all possible

values must be summed over in order to obtain the complete DOS:

D(E) =

∫
Da(Ea)Db(E − Ea)dEa (1.48)

Note that in general the DOS functions depend on the number of particles Na and

Nb, but this dependence won’t be explicitly written. Since the total system is closed,

there is one energy Ea (the equilibrium energy) which dominates the sum above. This

energy can be located by maximizing the summand:

0 =
∂Da(Ea)
∂Ea

Db(E − Ea) +Da(Ea)
∂Db(E − Ea)

∂Ea
. (1.49)

Noting that ∂Db(E−Ea)
∂Ea

= ∂Db(E−Ea)
∂(E−Ea)

∂(E−Ea)
∂Ea

= −∂Db(Eb)
∂Eb

and rearranging,
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1

Da(Ea)
∂Da(Ea)
∂Ea

=
1

Db(Eb)
∂Db(Eb)
∂Eb

. (1.50)

Each side of this equilibrium condition has the form of a logarithmic derivative.

This inspires the definition of “pure” entropy: σ = lnD(E), so that

(
∂σa
∂Ea

)
=

(
∂σb
∂Eb

)
, (1.51)

where the parenthesis indicate that other parameters (N , V , etc.) are held constant.

The condition for equilibrium when two systems are allowed to exchange energy,

but not particles, has been found. In common language, the systems have been placed

in thermal contact. The equilibrium condition represents thermal equilibrium, where

the temperatures must be equal. This gives us the definition of temperature:

1

T
= kB

(
∂σ

∂E

)
. (1.52)

The Boltzmann constant kB is a historical artifact; temperature was measured in

its own units before the foundational relationship of thermal physics and quantum

mechanics was understood. In a pure sense, temperature has dimensions of energy and

entropy is a dimensionless logarithmic measure of the number of accessible quantum

states. Practically, temperature is given its own scale and entropy is given by S =

kBlnD(E).

While the present approach is capable of dealing with the quantized nature of

microscopic states, until now the real quantum nature of the particles themselves has

been ignored. Indeed since σ = ln D(E) was defined based solely on the equality

of derivatives , an integration constant has been tacitly ignored. This constant turns

out to be related to the quantum nature of the particles considered here; a heuristic

argument for its form is given below. A more detailed derivation can be found in
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Penrose[49].

A many-body wavefunction for the N particles in our system are described at the

quantum level by a wavefunction which, for indistinguishable particles, has some per-

mutation symmetry. Permutations of these states yield identical (or exactly negated)

quantum state with the same observable properties. There are N ! permutations of N

particles, and when every point (q,p) in the many-particle phase space is summed

over (again, q = {qi}), every state is counted N ! times.

Furthermore, there is a fundamental unit of phase space prescribed by the Heisen-

berg uncertainty principle. This unit is commonly taken to be h3 for a single atom

and h3N for an N -particle system, where h is of course Planck’s constant. Dividing

this unit into the density of states ensures that states are counted per quantum unit

volume. The correct form is thus given by

S = kBln
D(E)

N !h3N
. (1.53)

The quantity σ (and thus S) has been derived by considering the equilibrium

condition of two interacting systems in thermal equilibrium. A more general definition

of entropy, accurate even far from thermal equilibrium, is called the Gibbs entropy:

σ =
∑
i

piln pi, (1.54)

where pi is the probability of state i.

Now, from the first law of thermodynamics

dU = TdS − PdV +
∑
j

µjdNj, (1.55)

which under the constraints of constant NVE becomes dU = −TdS so that the
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internal energy of the system is directly determined by the number Ω of microstates:

U = −kBT ln Ω. (1.56)

Expressions like this can be obtained for each ensemble, relating the logarithm of

the partition function with a corresponding free energy. Each ensemble is based on our

knowledge of the microcanonical ensemble. Systems are placed in contact (thermal,

chemical, etc.) and the complete system, which is closed, is analyzed through the lens

of the NVE. By assumption of relative size one can obtain the distribution functions

satisfying our chosen external constraints, accurate when our system of interest is

negligible in size (and thus all extensive variables) relative to the rest of the closed

system, which is referred to as the reservior . The most important ensembles to the

present work are described in the sections that follow.

1.6.2 Canonical Ensemble

The so-called canonical ensemble treats a system at constant temperature, volume

and particle count. This is commonly referred to in molecular dynamics literature as

an NVT ensemble. The derivation for the canonical distribution function begins by

considering two systems, a and b, which are in weak interaction with one another.

Weak interaction here requires the total hamiltonian be approximately equal to the

sum of hamiltonians for the constituent systems for all points in phase space:

H ≈ Ha +Hb. (1.57)

If these systems only interacting with one another, the total hamiltonian H must be

conserved. Considering a phase function which depends only on one of the systems,

say a, one can write the phase average of a quantity A as
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〈A〉 =

∫
A(qa,pa)δ(E −H(qa,pa)−Hb(qb,pb))

Da+b(E)
dqdp, (1.58)

where Da+b(E) is the total density of states:

Da+b(E) =

∫
δ(E −H(qa,pa)−Hb(qb,pb))dqadpadqbdpb. (1.59)

Since A(qa,pa) is independent of qb and pb, the canonical distribution function

can be defined as

faNV T (qa,pa) =
1

Da+b(E)

∫
δ(E −Ha(qa,pa)−Hb(qb,pb))dqbdpb

=
1

Da+b

∫
δ((E − Ea)−Hb(qb,pb))dqbdpb =

Db(E − Ea)

Da+b(E)

(1.60)

so that

〈A〉 =

∫
A(qa,pa)faNV T (qa,pa)dqadpa. (1.61)

To obtain a functional form for fNV T , system b is taken to be much, much larger

than system a so that E ≈ Eb � Ea. System b serves as a reservoir capable of

exchanging an arbitrary amount of energy with system a in order to satisfy the

constant-temperature constraint. In this case faNV T can be simplified by expressing Db

in terms of Sb through Equation 1.53 after multiplying and dividing by Db(E). With a

little foresight to convention the prefactor is defined (N !h3NZ)−1 = Db(E)/Da+b(E),
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which will be determined by the normalization condition. Now,

faNV T (qa,pa) = (N !h3NZ)−1Db(E − Ea)
Db(E)

= (N !h3NZ)−1 exp
[
(Sb(E − Ea)− Sb(E))/kB

]
,

(1.62)

but since Ea � E, Sb(E −Ea)−Sb(E) ≈ ∂Sb(Eb)
∂Eb

|Eb=E = 1/T b, and Ea = Ha(qa,pa)

so that

faNV T (qa,pa) = (N !h3NZ)−1 exp

(
− Ea

kBT b

)
. (1.63)

Dropping the subsystem labels and enforcing the normalization condition one finds

an expression for the canonical partition function Z:

Z =
1

N !h3N

∫
exp

(
−H(q,p)

kBT

)
dqdp. (1.64)

Finally, the NVT distribution function is given by

fNV T (q,p) =
1

N !h3NZ

∫
exp

(
−H(q,p)

kBT

)
dqdp. (1.65)

If the energies Ei are taken to be discrete, the probability of a given state i being

occupied is found to be

pi =
e−Ei/kBT∑Ω
j e
−Ej/kTB

. (1.66)

The numerator here is known as the Boltzmann factor for the state i. Using the

standard definition β = 1/kBT and the Gibbs entropy one can obtain an expression

40



for the Helmholtz free energy F = U − TS in terms of Z:

F =
Ω∑
i

Eipi + kBT

Ω∑
i

piln(pi)

=
Ω∑
i

1

β

e−βEi

Z

(
βEi + ln

e−βEi

Z

)

= − ln Z
βZ

Ω∑
i

e−βEi

= −kBT ln Z

(1.67)

1.6.3 NPT Ensemble

One of the most commonly used ensembles in MD simulations treats a system of

constant temperature, particle number, and pressure. Such an ensemble is called

isothermal-isobaric or NPT. The Boltzmann for a state being occupied must neces-

sarily include the volume of the system in that state. The probability of a system

occupying a state of energy Ei and volume V is given as

pi =
e−β(Ei+PV )

∆
, (1.68)

where ∆ here is the thermodynamic partition function for the isothermal-isobaric

ensemble, given by

∆ =
Ω∑
i

∫
e−β(Ei+PV )δ0dV, (1.69)

which is clearly related to the canonical partition function Z by

∆ =

∫
Ze−βPV δ0dV. (1.70)

Note that the normalization factor δ0, which is necessary to make ∆ dimensionless,
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is not prescribed by theory and can be chosen to be any function of state variables that

has units of inverse volume. While ∆ converges in the thermodynamic limit regardless

of normalization, care should be taken when comparing NPT results between different

MD software packages. This will be addressed more in the discussion of molecular

dynamics.

1.6.4 Other Ensembles

A more general ensemble treats a system with constant temperature and volume but

variable particle number. In this case, the chemical potential µ for each element

is held constant. Such an ensemble is typically called a grand canonical or µVT

ensemble. A term is introduced in the Boltzmann factor exponent which represents

the chemical potential energy of a state i. The grand canonical partition function, Ξ,

is given by the usual sum of Boltzmann exponentials:

Ξ =
Ω∑
i

e−β(Ei−µNi) (1.71)

It’s easy to show, as was done for the canonical ensemble, that the partition function

is related to the so-called grand potential or Landau free energy L:

L = F − µN = −kBT ln Ξ. (1.72)

As with the canonical ensemble, the grand canonical ensemble can be generalized

to variable volume by instead fixing the pressure. This so-called µPT ensemble has

partition function Θ, given by

Θ =

∫ Ω∑
i

e−β(Ei+PV−µNi)θ0dV =

∫
Ξe−βPV θ0dV, (1.73)
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a weighted average of the µVT partition function analogous to the relation between

NVT and NPT ensembles. Like δ0 in the canonical case, θ0 is a normalization factor

with units of inverse volume whose form is not uniquely prescribed by theory. One

can easily show that the logarithm of Θ is related to the Gibbs free energy G:

G = L+ PV = U − TS + PV − µN = −kBT ln Θ. (1.74)

While commonplace in simulations of chemical or biophysical reactions, neither

the µVT nor µPT ensembles are used in any molecular dynamics simulations in the

work presented here. More information on how the NVE, NVT and NPT statistical

ensembles are used to perform simulations will be covered in Chapter 3.

1.7 Structural Phase Transitions

The nature of transitions from one crystal structure to another is of considerable

interest in the present work. Pure titanium undergoes a transition from hexagonal

close-packed to body-centered cubic at a temperature of 1155 K [50, 51, 52] and a

transition from hcp to the ω-Ti phase at high pressure [50, 53, 54, 55]. The hcp

to bcc (or α to β) transition was measured by Petry et al.[56] to result from the

entropy contribution of low-lying transverse phonon branches T1[ξξ0] and T1[ξξ2ξ] in

the bcc lattice at high temperature. Furthermore, the stabilization of fcc tungsten

has been proposed [57, 58, 20] and will be investigated further in the present work.

This section describes the structures used to model the bcc↔hcp, bcc↔ω-Ti and

bcc↔fcc transformations.
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1.7.1 bcc to hcp

The α↔ β transition is modeled in the present work using the Burgers [59] distortion.

Two free parameters λ1 and λ2 control the motion of basis atoms and the shape of

the unit cell. A structure in the Burgers path between hcp and bcc titanium is given

by a four-atom orthorhombic cell with lattice vectors

A = (a1, a2, a3)

= a


1

α(λ1)
0 0

0
√

2α(λ1) 0

0 0
√

2


(1.75)

and basis atoms in direct coordinates

B1 = [0, 0, 0]

B2 =

[
1

2
,
1

2
, 0

]
B3 =

[
1

2
,

(
1− 3 + λ2

6

)
, 0

]
B4 =

[
0,

(
1

2
− 3 + λ2

6

)
,
1

2

]
(1.76)

where α(λ1) = 1 +
[(

3
2

)(1/4) − 1
]
λ1. Here, λ1 = λ2 = 1 corresponds to the hcp lattice

while λ1 = λ2 = 0 corresponds to bcc. The c/a ratio at λ1 = 1 is 6(1/4) = 1.565, very

close to the experimental value of 1.586.

In titanium alloys containing niobium, the hcp α phase is distorted into an or-

thorhombic phase named α′′. One can think of this distortion in terms of niobium

“pulling” the α phase along a Burgers-like transition toward the bcc phase. To de-

44



scribe α′′ and its relation to bcc, the above equations are generalized as follows:

A = a


1 0 0

0 b/a 0

0 0 c/a

 (1.77)

and

B1 = [0, 0, 0]

B2 =

[
1

2
,
1

2
, 0

]
B3 =

[
1

2
, (1− 2y) , 0

]
B4 =

[
0,

(
1

2
− 2y

)
,
1

2

]
(1.78)

where clearly y = 3+λ2

12
, which is the formulation given by Nishitani et al. [50], but

the lattice ratios b/a and c/a can now be adjusted to fit any general orthorhombic

cell. The bcc structure is obtained by setting b/a = c/a =
√

2 and y = 1/4 while

hcp corresponds to b/a =
√

3, c/a = (c/a)hcp and y = 1/6. This structure is used to

describe the α↔ β and α′′ ↔ β transitions in Ti and Ti3Nb, respectively, in Chapter

6. A schematic representation of how the cell is used to map bcc to hcp is shown in

Figure 1.7.1.

1.7.2 bcc to fcc

The body-centered cubic and face-centered cubic structures each contain a tetragonal

modification of the other as illustrated in Figure 1.7.2. There are a number of methods

to transform from bcc to fcc and vise versa but the present work employs the Bain [60]

path, wherein the lattice parameter and axial ratio are changed in a linear fashion.
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Figure 1.8: Schematic representation of the burgers transition mechanism in an or-
thorhombic unit cell. (Top) the standard bcc cell with bonds shown in orange in-
scribed in the orthorhombic (ort.) cell with b/a = c/a =

√
2. (Center) transitioning

to hcp involves a “shuffle” of atoms in a 〈11̄0〉β||〈112̄0〉α||〈010〉ort. direction indicated
by the blue arrows. Cones represent a change in the ort. box dimensions in the indi-
cated direction. Atoms are treated in direct coordinates, so their cartesian positions
change with “shear” in addition to “shuffle.” (Bottom) the standard hcp cell with
bonds shown in orange inscribed in an ort. cell with b/a =

√
3 and c/a = (c/a)hcp.
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At low pressure the two must be considered independent of one another, but at high

pressure the minimum-energy transition path approximately collinear.

Figure 1.9: Schematic relationship between face-centered cubic (blue) and body-
centered tetragonal (bct) (orange). A two-atom bct cell can be used to describe fcc,
and can be easily transformed to bcc by changing the axial ratio from

√
2 to unity.

A body-centered tetragonal cell is employed with variable c/a ratio:

A = (a1, a2, a3)

= a


1 0 0

0 1 0

0 0 c/a


(1.79)

with basis atoms at [0, 0, 0] and
[

1
2
, 1

2
, 1

2

]
. Here c/a =

√
2 and a = afcc produces a

face-centered cubic structure and c/a = 1 with a = abcc of course produces bcc.

1.7.3 bcc to ω-Ti

Formation of the ω phase of titanium has important ramifications for bulk material

properties. The ω phase is closely related to the bcc lattice and results from insta-
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bilities [61] therein. In titanium and zirconium, where the bcc phase is not stable at

room temperature, a calculation of phonon band structures reveals unstable eigen-

modes for the longitudinal branch centered around the 2
3
[111] point in k-space. Such

a phonon corresponds precisely to a collapse of two adjacent {111}bcc planes, leaving

every third plane unchanged. These collapsed planes become the honeycomb layers

of ω-Ti, i.e. {111}bcc||{0001}ω. A simple hexagonal cell can be used to model this

transformation:

A = (a1, a2, a3)

= a


1 1

2
0

0
√

3
2

0

0 0 c/a


(1.80)

with three basis atoms given in direct coordinates by

B1 = [0, 0, 0]

B2 =

[
1

3
,
1

3
,
1

3
+
ξ

6

]
B3 =

[
2

3
,
2

3
,
2

3
− ξ

6

]
,

(1.81)

where ξ = 0 yields the bcc structure and ξ = 1 produces ω-Ti. The lattice parameters

of the hexagonal structure in terms of the cubic bcc cell are a = aβ
√

2, and c =

aβ
√

3/2, thus the axial ratio in the hexagonal representation has the ideal value

c/a =
√

3/8.

The lattice parameters of ω-Ti are commensurate as a result of the structural

similarity of the two phases. In titanium aω = 4.58 Å and aβ
√

2 = 4.60 Å, however the

equilibrium c/a ratio of ω differs slightly from the ideal value. When calculating the

transition energy, the overall lattice constant is taken as an average of the appropriate
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values from the two phases and the axial ratio is mapped as a linear function of ξ. A

schematic of this transformation is shown in Figure 1.7.3.

Figure 1.10: Schematic representation of the hexagonal cell used to transform bcc into
ω-Ti. (Top) a hexagonal representation of bcc with the standard cell inscribed with
orange bonds. (Center) atoms in the {111} planes at c/3 and 2c/3 collapse toward
c/2 to form the honeycomb layers of ω. (Bottom) the hexagonal ω-Ti structure is
shown with bonds connecting to honeycomb atoms shown in orange.
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Chapter 2:

Density Functional Theory

Density functional theory (DFT) calculates electronic structure in chemical and condensed-

matter systems. While frequently referred to as “ab initio,” or “from first princi-

ples,” practical DFT necessarily involves an approximation to the so called exchange-

correlation energy, a term in the hamiltonian which contains the quantum pieces of

the electron-electron interaction. Despite this mis-characterization, or perhaps be-

cause of it, DFT is one of the most widely-used electronic structure methods and

can be reliably used for calculations of transition metals and alloys if care is taken to

ensure convergence with respect to input parameters.

In 2.1 the basic tenants of DFT as used in this work are reviewed. In 2.2.1 the

various levels of approximation made to the energy functional are discussed. In 2.3

the implementation for planewave-DFT in metals is outlined and a procedure for

ensuring convergence is presented.
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2.1 The Schrödinger Equation in Condensed Mat-

ter

As with all electronic structure methods, the primary objective of DFT is to solve the

NZ-atom, N -electron Schrödinger equation, that is, to diagonalize the hamiltonian

H(N) = T (N) + V (N), (2.1)

where T (N) is the kinetic energy operator of the atoms and electrons:

T (N) =

NZ∑
I=1

(
P 2
I

2MI

+

nI∑
i=1

p2
i

2m

)
=

NZ∑
I=1

P 2
I

2MI

+
N∑
i=1

p2
i

2m
. (2.2)

Here, MI is the mass of atom I’s nucleus, m is the electron mass, and nI is the

number of electrons contributed by atom I. The system is assumed to be composed

of neutral atoms such that nI is also the atomic number of atom I. The potential

energy necessarily includes the ion-ion (Z-Z), ion-electron (Z-e) and electron-electron

(e-e) interactions:

V (N) = V
(N)
Z−Z + V

(N)
Z−e + V

(N)
e−e

=
1

2

NZ∑
I=1

NZ∑
J 6=I

nInJ
|RJ −RI |

−
NZ∑
I=1

N∑
i=1

nI
|r̂i −RI |

+
1

2

N∑
i=1

N∑
j 6=i

1

|r̂i − r̂j|
,

(2.3)

where the Hartree units for which e = h̄ = m = 4πε0 = 1 are used.

Before solving Equation 2.1, first consider the motion of ions and electrons. The

nuclear mass MI is roughly 1,000 times greater than the electron mass m. This means

given the same force, electrons are accelerated 1,000 times more than ions. Electrons

are able to rapidly adjust to changes in ionic configuration while changes in electronic
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structure are adjusted to very slowly by the ions. One can therefore assume that

the ionic and electronic motions are dynamically decoupled and that the electrons

remain in the ground state at all times for any reasonable (thermal or mechanical)

ionic motion. This approximation is known as the adiabatic, or Born-Oppenheimer,

approximation.

In the adiabatic approximation the ionic and electronic portions of the crystal

hamiltonian can be separated; the electronic part, dubbed H(N), is given in Hartree

units by

H(N) =
N∑
i=1

p̂2
i

2
−

NZ∑
I=1

N∑
i=1

nI
|r̂i −RI |

+
1

2

N∑
i=1

N∑
j 6=i

1

|r̂i − r̂j|
, (2.4)

which in the r-basis becomes

H(N) = −1

2

N∑
i=1

∇2
i −

NZ∑
I=1

N∑
i=1

nI
|ri −RI |

+
1

2

N∑
i=1

N∑
j 6=i

1

|ri − rj|
, (2.5)

where ∇2
i is the laplacian for the coordinates of electron i. Equation 2.5 contains all

the complexity of the electronic structure in a crystal. There are many approaches

to solving the electronic Schrödinger equation

H(N) |Ψ〉 = E(N) |Ψ〉 , (2.6)

with or without approximation. Here take the approach of DFT, which treats the

charge density ρ(r) representing the many-body wavefunction Ψ({ri;σi}) as the fun-

damental quantity:

ρ(r1) = N
∑
σi

∫
|Ψ({ri;σi})|2 dr2dr3 · · · drN . (2.7)

Given the antisymmetry of any wavefunction for indistinguishable fermions, Equation
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2.7 represents the density of electrons no matter which N −1 positions are integrated

over.

Now examine the total energy of the (normalized) ground state:

E(N) = 〈Ψ|HN |Ψ〉

= 〈Ψ| − 1

2

N∑
i=1

∇2
i |Ψ〉+ 〈Ψ|V (N)

Z−e |Ψ〉+ 〈Ψ|V (N)
e−e |Ψ〉 .

(2.8)

The first term is the full kinetic energy operator T (N) of the N electrons. Without

further assumptions on the form of the wavefunction, no simplifications can be done.

The second term is the potential energy due to the lattice ions and takes a simple

form:

〈Ψ|V (N)
Z−e |Ψ〉 = 〈Ψ| −

NZ∑
I=1

N∑
i=1

nI
|r̂i −RI |

|Ψ〉

=
∑
j

∑
σj

∫ NZ∑
I=1

N∑
i=1

−nI 〈Ψ|{rj;σj}〉 〈{rj;σj}|Ψ〉
|ri −RI |

dr1 · · · drN ,
(2.9)

where a complete set of states |{rj;σj}〉 has been inserted. Notice that for each i in

the summation, the N − 1 integrals over rj for j 6= i can be performed. Thus from

equation 2.7 the ion-electron potential can be written

〈Ψ|V (N)
Z−e |Ψ〉 = E

(N)
Z−e [ρ(r)] =

NZ∑
I=1

N∑
i=1

∫
−nIρ(ri)/N

|ri −RI |
dri

= −
∫ NZ∑

I=1

nIρ(r)

|r−RI |
dr,

(2.10)

which is exactly the form of the classical electrostatic potential energy between a

negative charge distribution ρ(r) with discrete point charges nI at positions RI . The

kernel of this integral is a simple function of r which is given the symbol vZ−e(r):
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vZ−e(r) = −
NZ∑
I=1

nI
|r−RI |

(2.11)

such that

E
(N)
Z−e[ρ(r)] =

∫
vZ−e(r)ρ(r)dr. (2.12)

The periodicity of vZ−e(r) has an important effect on the electronic wavefunctions

known as Bloch’s theorem, which states that the eigenstates of Equation 2.6 can be

written as a linear combination of functions known as Bloch waves (BW). A Bloch

wave is given by a planewave defined by wavevector k and an envelope u(r):

χBWk (r) = eik·run(r) (2.13)

where the envelope satisfies u(r + R) = u(r) for any lattice vector R. This is our

first sign that the eigenstates of a crystal are crucially described in reciprocal space.

The lattice periodicity of u allows any point k′ in k-space to be remapped into the

first Brillouin zone by letting k′ = k + Kn where Kn is the reciprocal lattice vector

nearest to k′ . The planewave eiKn·r thus has the same periodicity as u(r), and the

band index n is defined such that un(r) = eiKn·ru(r) or

χBWnk (r) = eik·run(r). (2.14)

Bloch waves are the cornerstone of band theory and elucidate the necessity of the re-

ciprocal lattice in describing wavefunctions in crystals. The dependence of Ψ on k will

be suppressed for now, and returned to when discussing the practical implementation

of DFT in Section 2.3.

The electron-electron interaction potential contains many of the significant quan-

tum complexities owing to the two-body operator |ri − rj|. V
(N)
e−e cannot be simply

54



expressed in terms of the total density alone. This can be seen simply by enforcing

anti-symmetry in the full wavefunction |Ψ〉 through the ansatz

〈{ri;σi}|Ψ〉 = Ψ ({ri;σi}) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1;σ1) ψ2(r1;σ1) · · · ψN(r1;σ1)

ψ1(r2;σ2) ψ2(r2;σ2) · · · ψN(r2;σ2)

...
...

. . .
...

ψ1(rN ;σN) ψ2(rN ;σN) · · · ψN(rN ;σN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(2.15)

where the ψi are mutually orthonormal single-particle states. Note that for now

the notational complications arising from the electron spin states have been ignored.

This form, called a Slater determinant, ensures mathematically that exchanging any

two electrons will produce an over-all minus sign in the N -electron wavefunction |Ψ〉

consistent with Fermi-Dirac statistics. The prefactor 1/
√
N ! ensures normalization

of the full wavefunction:

∫
|Ψ ({ri;σi})|2 dr1dr2· · ·drN = 1. (2.16)

Using a Slater determinant wavefunction in Equation 2.6 and a single-particle

form for the kinetic energy leads to the Hartree-Fock (HF) theroy, which has two

distinct terms in the interaction potential [62] (dropping the σ-dependence of ψ for

clarity)

V HF
e−e =

1

2

∑
i,j

∫
ψ∗i (r)ψ∗j (r

′)ψi(r)ψj(r
′)

|r− r′|
drdr′−1

2

∑
i,j

δσi σj

∫
ψ∗i (r)ψ∗j (r

′)ψj(r)ψi(r
′)

|r− r′|
drdr′.

(2.17)

The first is called the Hartree energy, and can be interpreted as the electrostatic

self-energy of the electron cloud. The second term, known as the exchange energy

or Fock energy, represents the energetic effect of maintaining orthogonality of the
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electron states as they interact through the coulomb potential. It serves to lower the

total energy by keeping electrons of like spin spatially separated [63]. The correlation

energy can be defined precisely as the difference between the exact energy and the

Hartree-Fock energy.

Note that the Hartree energy can be expressed as a local operator and represented

by an integral kernel vH(r) called the Hartree potential:

EH =
1

2

∑
i,j

∫
ψ∗i (r)ψ∗j (r

′)ψi(r)ψj(r
′)

|r− r′|
drdr′ =

1

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ =

1

2

∫
ρ(r)vH(r)dr,

(2.18)

but no such simplification can be performed for the exchange energy. An operator

which cannot be represented as such a kernel integrated over the density is called a

non-local operator, and complicates the typical self-consistency scheme of DFT for

reasons addressed in the next section.

2.2 The Kohn-Sham Method

The Fock exchange is impractical for use in DFT, but one can still proceed with

taking Ψ ({ri;σi}) to be a Slater determinant of single-particle orbitals ψi(ri;σi).

Let the spatial component of the wavefunction be φi(rj) and the spin component be

αs(σj) such that ψis(rj;σj) = αs(σj)φi(rj). The subscript s here represents spin-up

or spin-down, so for every spatial orbital φ there are two single-particle states ψ; one

corresponding to s =↑ and one to s =↓. The index i thus runs not to N but to N/2

or (N + 1)/2, depending on whether N is even or odd. Henceforth the sum is be

over the single-particle spatial orbitals and an occupation number fµ is used to do

the spin-bookkeeping.
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The total density is written in terms of the single-particle orbitals as

ρ(r) = ρ(r1) = N

∫ ∑
σi

|Ψ ({ri;σi})|2 dr2 · · · drN

=
∑
i

∑
σi

|ψis(r;σi)|2

=
∑
i

∑
s

∑
σi

|αs(σi)|2 |φi(r)|2

≡
∑
µ

fµ |φµ(r)|2 .

(2.19)

The second line follows from the orthonormality of the spin and spatial components

of the ψi. The sum over occupied orbitals is then changed to a sum over the entire

set of single-particle orbitals by in the last line using the occupation numbers fµ. The

index is changed from i to µ to emphasize the change in summation from electrons

to single-particle orbitals.

Note that |αs(σi)|2 = 1 for all σi = ±1, so one might expect fµ to take an

integer value between 0 and 2. In practice, however, a “smearing” of the density

of states is often used to speed up calculations as discussed later. In metals, since

the fermi energy lies in the conduction band where the density of states is nonzero, a

basis set containing more single-electron orbitals than N/2 or (N+1)/2 is required to

accurately describe the highest-lying eigenstates. This is due to the partial occupancy

of states above the chemical potential resulting from smearing.

The antisymmetry of the many-electron state has been guaranteed, and a useful

description of the density has been obtained, but as of yet there is no way of computing

the orbitals φµ. Kohn and Sham[64] addressed this by starting with the variational

principle for the electronic hamiltonian

min
Ψ

〈Ψ| T + Ve−e + VZ−e |Ψ〉
〈Ψ|Ψ〉

= E0, (2.20)
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where minimization is respect to the full wavefunction Ψ.

Take the density ρ(r) to be continuous and non-negative such that it can be rep-

resented by an N -electron wavefunction through the first line of Equation 2.7. Then

since VZ−e is an exact local operator it is fixed by this choice and the determination

of T and Ve−e amounts to a minimization of their sum under the constraint of fixed

density. This defines a functional

F [ρ(r)] = min
Ψ→ρ(r)

〈Ψ| T + Ve−e |Ψ〉 = T [ρ(r)] + Ve−e[ρ(r)] (2.21)

such that

E[ρ(r)] = F [ρ(r)] + Ve−Z [ρ(r)], (2.22)

and if ρ0(r) is the ground-state density then E0 = E[ρ0(r)]. The variational principle

has been expressed as an optimization problem with respect to the density, but the

difficult work has been swept into the problem of finding the wavefunction Ψ which

actually determines F [ρ(r)]. Neither term in F can be simply expressed using the

total density, so the quantities Ts and Exc are defined such that

F [ρ(r)] = Ts[ρ(r)] + EH [ρ(r)] + Exc[ρ(r)], (2.23)

where EH [ρ(r)] is the Hartree energy for density ρ(r). Ts is interpreted as that portion

of the kinetic energy which can expressed using our single-particle orbitals

Ts = −1

2

∑
µ

fµ

∫
φ∗µ(r)∇2φµ(r)dr. (2.24)

The difference T − Ts represents the many-body effects on the kinetic energy of

the N-electron system. This is one source of electron correlations, the other being
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the electron-electron potential. These correlations have been swept into the so-called

exchange-correlation functional Exc[ρ(r)]. No real progress has been made in finding a

solution to the many-body Schrödinger equation, but no approximations either have

been made either. It can be proven [64] that there exists a functional Exc which

produces the exact many-body ground state energy, but the proof provides no form

and the evaluation of such a functional must be at least as difficult as a direct solution

to the full Schrödinger equation. What has truly been accomplished is to collect the

quantum complexity of the interacting system into a single quantity which can be

approximated to various degrees.

Next the quantity vxc(r) is defined as the functional derivative of the exchange-

correlation energy with respect to the density,

vxc(r) =
δExc[ρ(r)]

δρ(r)
, (2.25)

and the optimization problem is written under the constraint of fixed number of

electrons N . The Lagrange multiplier µ, which is of course the chemical potential,

represents the energy required to add an electron to the system. The variation of the

constrained total energy with respect to the density must be zero:

δ

δρ(r)

[
E[ρ(r)]− µ

(∫
ρ(r)dr−N

)]
= 0. (2.26)

This can be written as

δTs[ρ(r)]

δρ(r)
+ vH(r) + vZ−e(r) + vxc(r) = µ, (2.27)

which the Euler-Lagrange equation for a system of non-interacting particles having

kinetic energy Ts and experiencing the effective potential veff (r) = vH(r) + vZ−e(r) +
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Figure 2.1: Self-consistency loop of Kohn-Sham DFT. A Poisson equation is solved to
obtain the Hartree potential, from which the effective potential can be formed. The
single-particle Schrödinger equations are solved and the output density is calculated
from the new single-particle orbitals. The new density is then fed back into the
Poisson equation. The loop exits when some convergence criterion (e.g. a sufficiently
small change in energy or density) is achieved.

vxc(r). This is equivalent to a set of single-particle Schrödinger equations

− 1

2
∇2φµ(r) + veff (r)φµ(r) = εµφµ(r) (2.28)

known as the Kohn-Sham equations. The solutions φµ(r) are called the Kohn-Sham

(KS) orbitals and can be used to construct ρ(r) and Ts through Equation 2.19 and

Equation 2.24 respectively. The Hartree potential at each iteration is typically found

by solving a Poisson equation. The self-consistency loop in Kohn-Sham DFT is shown

diagrammatically Figure 2.1

While it looks like the problem has been simplified into a more easily-solved set

of partial differential equations, the dependence of veff (r) on the KS orbitals through

ρ(r) means an iterative process is required where the current φµ(r) determine the

Hartree and exchange-correlation potentials used in computing the next generation
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of orbitals.

Typically it is the exchange-correlation potential vxc(r) that is tabulated, allowing

the total energy to be written using local integral kernels as:

E[ρ(r)] = Ts +

∫
vZ−e(r)ρ(r)dr +

∫
vH(r)ρ(r)dr +

∫
vxc(r)ρ(r)dr. (2.29)

This inherent assumption of locality means that even the Fock exchange is necessarily

approximated in such a formulation. There are many different approaches to approxi-

mating Exc, and the development of better functionals is an ongoing area of research.

In the next section the most commonly used exchange-correlation functionals are

outlined.

2.2.1 Exchange-Correlation Functionals

The exchange-correlation energy functional Exc[ρ(r)] can be expressed in integral form

by defining the exchange-correlation energy density εxc(ρ(r), . . . ) = vxc(r):

Exc[ρ(r)] =

∫
ρ(r)vxc(ρ(r), . . . )dr, (2.30)

where . . . indicates the possibility of including more dependencies than just ρ(r).

Exchange-correlation functionals can be categorized according to the functional de-

pendence of vxc. The local-density approximation (LDA) depends, unsurprisingly,

only on the local density of electrons. The generalized-gradient approximation (GGA)

contains a typically nonlinear dependence on the gradient |∇ρ(r)|. Higher-order ap-

proximations can contain the single-particle kinetic energy density
∑
fµφ

∗
µ(r)∇2

µφµ(r),

higher-order derivatives like ∇2ρ(r), or even a portion [65] of the Fock exchange (see

Equation 2.17).
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Figure 2.2: “Jacob’s ladder” of exchange-correlation approximations for density func-
tional theory. The bottom of the ladder (“earth”) represents the Hartree interaction
energy, where exchange and correlation effects are ignored. The top of the ladder
(“heaven”) represents the exact ground-state functional. Rungs are labeled accord-
ing to the approximation, and the highest-order term included in the dependency of
vxc(ρ(r), . . . ) is shown on the left-hand side. Climbing the ladder increases accuracy
at the cost of computational efficiency as depicted by arrows to the right of the ladder.

The various classifications of exchange-correlation functionals are often assigned to

the rungs of a ladder, blasphemously called “Jacob’s ladder,” as shown in Figure 2.2.

In the theological analogy “heaven” represents the exact functional shown to exist

by Kohn and Sham while our terrestrial realm represents the Hartree energy (i.e.

εxc = 0). Climbing the ladder gets us closer to heaven (more accurate ground-state

energies) but requires us to expend energy in the form of decreased computational

efficiency.
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2.3 Implementation

So far the theory of Kohn-Sham DFT has been developed without addressing details

of its practical implementation. A great many software packages have been devel-

oped for doing this in different ways, but in most methods the Kohn-Sham orbitals

are expanded in terms of some basis functions to cast the problem as one of linear

algebra. In real-space these basis functions are typically the Wannier orbitals, which

are the Fourier transforms of the Bloch waves seen earlier. In k-space, planewaves are

often used. Each implementation has its idiosyncrasies but in this section the basics

employed by the Vienna Ab-initio Simulation Package (VASP) [66, 67, 68, 69], and

how to ensure that calculations are properly converged, are discussed.

2.3.1 Planewave Expansion

VASP is a k-space method which expands the Kohn-Sham orbitals in terms of planewaves:

φjk(r) =

|G|<Gcut∑
G

cjk,Ge
i(k+G)·r (2.31)

where G is from a set of points in reciprocal space. The coefficients cjk,G form a

vector representing the KS oribtal φjk(r), and matrix elements of the hamiltonian in

this representation are straightforward to evaluate. In general an infinite number of

planewaves are needed to represent a three-dimensional function to arbitrary preci-

sion, but in practice the basis set is truncated at some maximal G-vector magnitude

Gcut. This quantity is often related to an energy, called the cutoff energy , as if it were

the momentum of a free electron in three dimensions:

Ecut =
h̄2G2

cut

2m
. (2.32)
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The cutoff energy has a strong effect on the accuracy and speed of planewave DFT

calculations because it determines the size of the matrix that needs to be diagonalized.

General diagonalization routines are typical of order O(N3), and since N ∼ G3
cut the

algorithms scale with Ecut on the order O(E
9/2
cut ). Too few planewaves, however, and

the KS orbitals may be ill-represented near the ion cores where the coulomb potential

is strong and the wavefunctions are rapidly-varying.

2.3.2 Pseudopotentials

The efficiency problem outlined above can be addressed by orthogonalizing the basis

functions with the core states before expansion [62]. This can be re-cast as modifying

the hamiltonian into a “pseudo” hamiltonian appyling only to the valence orbitals

φvk(r):

Hpseudoφvk(r) = (T + V pseudo)φvk(r) = εvkφ
v
k(r), (2.33)

where V pseudo (the pseudopotential) is the original potential with a (positive) correc-

tion depending on the energies of the valence states above those of the core states.

Since Vpseudo is smaller than V , fewer planewaves are needed to describe the valence

states. Pseudopotentials are complicated and specific to the exchange-correlation

functional being used, but the general logic is to ignore the inner-shell electrons (i.e.

not use them in calculating the density or total energy) under the assumption that

their energies will be unchanged in a crystal, but to account for their required or-

thogonality with the valence states through an added potential energy term. This is

shown graphically in Figure 2.3. It is important to note that the number of valence

electrons included in the calculation has a strong effect on the accuracy at low ionic

separations. If one intends to do high-pressure DFT calculations, pseudopotentials

which do not average out the high-lying core states (so-called semicore states) should
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Figure 2.3: Schematic of a pseudopotential and pseudo-wavefunction compared to
the full potential and corresponding wavefunction. Rapid oscillations in the exact
wavefunction near the origin, necessary to maintain orthogonality with the core states
deep in the coulomb well, are replaced by a slowly decaying pseudo-wavefunction
below the cutoff radius rc. Original image by Wolfram Quester for https://en.

wikipedia.org/wiki/Pseudopotential

be used.

2.3.3 Sampling the Brillouin Zone

As suggested by Equation 2.31, diagonalization of the KS hamiltonian must be done

for each KS orbital j at every k in the Brillouin zone. The variation of φjk(r) through-

out the Brillouin zone enters the total density as an integral:

ρ(r) =
∑
µ

fµ

∫
BZ

dkφ∗µk(r)φµk(r), (2.34)
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but one can’t well tabulate φ at an infinite number of points. An evenly-spaced grid

of k points is thus used to sample the Brillouin zone. These grids must be compatible

with the symmetry of the bravais lattice, so the points are given as multiples of the

reciprocal lattice vectors. In the present work the scheme of Monkhorst and Pack

[70], where a mesh size Nα×Nβ×Nγ is input and k points are constructed according

to

kαβγ =uαb1 + uβb2 + uγb3

uβ =
2β −Nβ − 1

2Nβ

, β = 1, 2, · · · , Nβ etc,
(2.35)

is employed.

Sampling the BZ on a grid of course converts the integral in Equation 2.34 into a

sum, but this is only accurate if the φjk are slowly varying compared to the spacing

of the grid.

2.3.4 Smearing

In metals, the chemical potential (or Fermi energy, at zero temperature) lies inside

the conduction band where the electronic density of states is nonzero. This produces

a discontinuity in quantities which must be integrated in the BZ. Such a discon-

tinuity requires a very large number of planewaves, and thus k-points, to describe

accurately. The solution is to “smear” the density of states around the Fermi level

into a continuous function that is easier to integrate.

In the present work the method of Methfessel and Paxton (MP) [71] is used. The

general idea is to smear the DOS into a function which quickly drops to zero in

such a way as to approximately balance the error above and below the Fermi level.

This is accomplished using a combination of the error function erf(x) and Hermite
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polynomials of various degree. Here the 1st order MP smearing is employed. The

smeared DOS (gs) is given by

gs(E) = g(E)

[
1

2

(
1− erf

(
E − EF

σ

))
− E − EF

2σ
√
π
e
−
(
E−EF
σ

)2
]
, (2.36)

where σ is called the smearing parameter and is sometimes equated to kBT to obtain

the “smearing temperature” or “electronic temperature.”

2.3.5 Convergence

The cutoff energy, smearing parameter k-point mesh size are the most important

parameters determining the accuracy of a KS-DFT calculation in VASP. To optimally

balance speed and accuracy, a careful check of convergence should be done before

serious calculations are attempted. Presented below is a convergence-testing strategy

employed for every phase considered in the present work:

(i) Choose lattice constants based on experiment, previous calculations, rule of

mixtures, or an estimate. Choose convergence criterion (i.e. desired precision of

calculations), called ∆Ecvg. In the present work, ∆εcvg =1 meV/atom

(ii) With a large k-point mesh (e.g. 40×40×40 in a b.c.c. cell) and no smearing

(Tetrahedron method with Blochl corrections) run a single self-consistent electron

calculation (a.k.a. “single-point” calculation) for planewave cutoffs between 200 and

700 eV. At least one very large cutoff, between say 700 eV and 900 eV, should be used

as the “converged” value (Ecvg
cut ) and the optimal planewave cutoff (Ecut) chosen to

be the smallest value such that ε(Ecut)− ε(Ecvg
cut ) ≤ ∆εcvg, where ε(Ecut) is the total

energy per atom calculated with cutoff Ecut. A typical value for Ecut in the present

work is 500 eV.

(iii) Using the chosen Ecut, do single-point calculations for various sized k-point
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meshes from 1 × 1 × 1 up to mesh used in (ii). Nα, Nβ and Nγ should be chosen

according to Brillouin zone dimensions such that the mesh-spacing is approximately

equal in all directions. If Nkpt is the number of k-points for a given calculation and

N cvg
kpt is the number used in step (ii), the mesh size should to be the smallest value

such that ε(Nkpt) − ε(N cvg
kpt ) ≤ ∆εcvg. For example, a grid of 17 × 17 × 13 k-points

are used for hcp-Ti in the present work. As a rule of thumb, supercells require fewer

k-points than unit cells because the Brillouin zone is smaller.

(iv) Using the previously determined values of Ecut and k-point mesh size, run

single-point calculations for smearing parameters between roughly 0.01 and 2 eV.

Since total energy generally increases with smearing, the parameter σ should be

chosen to be the largest value such that ε(σ)− ε(Blochl) ≤ ∆εcvg. A value of σ = 0.1

eV is used for all structures in the present work.
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Chapter 3:

Classical Molecular Dynamics

Molecular dynamics (MD) is a field of computational physics involving the modeling

of materials – (bio)molecular, crystalline or otherwise – at the atomic level. Atoms

are typically treated as point-particles, though can be modeled as hard spheres or

ellipsoids as well, and interatomic forces are used to update their configuration at

each successive timestep. While forces can be derived directly from the multi-electron

Schroedinger equation (so-called ab-initio MD) via the Hellman-Feynman theorem, it

is far more common to approximate forces by deriving them from classical potential

energy functions dependent only on the positions (and possibly orientations) of atoms

in the simulated system. This latter method, referred to as classical MD (CMD), is

the focus of the present work.

3.1 Fundamentals

In essence, a CMD simulation is a numerical integration of the classical equations of

motion for each atom in a system with forces derived from the interatomic potential
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V ({ri}):

mj
d2rj
dt2

+∇jV ({ri}) = 0, j = 1, . . . , N (3.1)

where mj is the mass of atom j. Forces are typically evaluated at the present timestep

and the position r of each atom is updated simultaneously. While various numerical

integrators exist, the most widely used – and the only one used in the present work

– is the Velocity Verlet (VV) algorithm. Given a simulation at time t and a timestep

δt, the position rj and velocity vj of each atom in a system is updated according to

fj(t) ≡ fj(rj(t))

rj(t+ δt) = rj(t) + vj(t)δt+
1

2mj

fj(t)δt
2

vj(t+ δt/2) = v(t) +
1

mj

f(t)
δt

2

fj(t+ δt) ≡ fj(r(t+ δt))

vj(t+ δt) = v(t+ δt/2) +
1

mj

f(t+ δt)
δt

2
,

(3.2)

where the force is of course derived from the equation of motion as fj(r(t)) =

∇jV ({ri(t)}). The VV integrator is a use case of the more general Leapfrog al-

gorithm, as can be seen by the use of half-time steps in evaluating the velocity, which

can be shown to be of order O(δt4) and is superior compared to simpler approaches

such as the Euler method. Furthermore, only one copy of each array ({r}, {v} and

{f}) is necessary to hold in memory at a time.

The ordinary VV algorithm conserves the hamiltonian H = T + V for small δt

(typically on the order of a femtosecond for metallic systems), clearly has no steps

which can vary the total volume of a system – a quantity defined by simulation inputs

– and also has no mechanism for adding or removing particles. Hence it is a numerical

integration of the NVE ensemble discussed in Chapter 1. Integrating the equations
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of motion under different constraints, such as NVT or NPT, require modifications to

the VV discussed in the next section.

3.2 Ensemble Integration

Evolving the system of atoms in accordance with more general statistical mechanics

ensembles (see Section 1.6) requires additional terms in the hamiltonian function,

leading to time-integration equations distinct from Equation 3.2. This section de-

scribes the ensemble integration techniques employed in the present work for the

NVT and NPT ensembles.

3.2.1 NVT

Integrating the equations of motion in such a way as to keep the temperature fixed

in a simulation requires the use of a thermostat . Choices include the Langevin[72]

or Berendsen[73] thermostats, but the present work employs the Nosé-Hoover[74, 75]

(NH) method. A description of the NH thermostat following that of Tadmor and

Miller[48]is provided below, with a slight re-definition of the free parameter consistent

with the implementation in lammps.

The NH method begins by adding to the N -particle hamiltonian the energy of a

fictitious particle at position Q and with momentum P and mass M such that

HNV T = HNH = H +
P 2

2M
+ 3NkBT lnQ, (3.3)

where T is the target temperature for the simulation. With clever application of
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Hamilton’s equations the time-evolution can be written

mj
d2rj
dt2

= fj − γmj
drj
dt
, (3.4)

where γ = P/M satisfies

dγ

dt
=

1

M

(∑
j

p2
j

mj

− 3NkBT

)
. (3.5)

This is equivalent to

dγ

dt
=

1

M∗ (Tinst − T ) (3.6)

with M∗ = 3kBM/N . Since γmv has units of force, it follows that γ has units of

frequency, hence Equation 3.6 can be written as

γ̇ =
1

τ 2
T

(
Tinst
T
− 1

)
, (3.7)

where τT is a characteristic time determining the rate at which the system is ther-

mostatted. A typical value for τT in simulations of metals is ∼1 ps.

Integrating Equations 3.3 and 3.6 together will cause the instantaneous temper-

ature Tinst to tend toward (while oscillating around) the target temperature T at a

rate dependent on the input parameter τT . Not all values of τT are viable, and the

appropriate value depends on the system under study.

A modification of the VV algorithm for use with the NH thermostat is given

below. The physical force from Equation 3.2 is replaced by the Nosé-Hoover force

fNHj (rj,vj) = fj(rj)− γmjvj and γ is evolved using the half-step time:
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fNHj (t) ≡ fNHj (rj(t),vj(t), γ(t))

rj(t+ δt) = rj(t) + vj(t)δt+
1

2mj

fNHj (t)δt2

vj(t+ δt/2) = v(t) +
1

mj

fNH(t)
δt

2

γ(t+ δt) = γ(t) +

[
Tinst(v(t+ δt/2))

T
− 1

]
δt

τ 2
T

fNHj (t+ δt) ≡ fNHj (r(t+ δt),v(t+ δt/2), γ(t))

vj(t+ δt) = v(t+ δt/2) +
1

mj

fNHj (t+ δt)
δt

2
,

(3.8)

where the instantaneous temperature as a function of velocity is given by Equations

3.5 and 3.6. The half-step velocity vj(t + δt/2) is used to evaluate γ(t + δt) and

fNHj (t+ δt) in order to avoid a situation where vj(t+ δt) depends on itself, requiring

a self-consistency loop much like the Kohn-Sham equations of Chapter 2. Given the

right choice of τT , self-consistency of the velocity will emerge from this algorithm

after a few iterations. Early timesteps of a simulation are thus un-physical, so an

“equilibration” time is necessary before the output is reliable.

3.2.2 NPT

In order to integrate the atomic equations of motion consistent with the NVT en-

semble, simulation cell dimensions must be allowed to change in response to internal

and external stresses. This requires an equation of motion for the cell parameters,

the nature of which depends heavily on the form of stresses to be considered. The

present approach, described in detail by Melchionna et al. [76] , is analogous to the

NH thermostat but where the variable is a tensor ¯̄η(t).

The stress tensor ¯̄σ in this case is analogous to Tinst in the NH method, and can
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be computed from the atomic positions and momenta in a cell of volume Ω as follows:

σµν =
1

Ω

[
N∑
i

pµi p
ν
i

mi

+
1

2

N∑
i 6=j

∂V

∂rij

rµi r
ν
j

rij

]
. (3.9)

This expression for the stress tensor is known as the Cauchy stress or virial stress.

Note that it is a function of the momenta (i.e. velocity) and position of each atom as

well as the cell volume.

As with the NH (NVT) method, the present NPT approach starts by adding

auxiliary terms to the hamiltonian, from which equations of motion are derived from

Hamilton’s equations. Let ¯̄Ω(t) be the matrix containing the cell vectors (column-

wise) such that Ω(t) = det[ ¯̄Ω(t)] is the volume. The NPT hamiltonian is given by

HNPT = HNV T + PΩ(t) +
1

2
NkBT tr[¯̄η(t)T ¯̄η(t)]τ 2

P , (3.10)

and leads to time-evolution equations for ¯̄η and Ω(t):

d¯̄η(t)

dt
=

Ω(t)

NkBTτ 2
P

(
¯̄σ − ¯̄IP

)
d ¯̄Ω(t)

dt
= ¯̄η(t) ¯̄Ω(t).

(3.11)

Here the parameter τP is a characteristic time for stress evolution analogous to

τT and ¯̄I is the identity tensor. A typical value of τP in NPT simulation of metals is

∼10 τT . Integration of these equations can be done simultaneously with those of the

NH thermostat as they are independent of one another. The time-evolution of the

box tensor can be solved by inspection:

¯̄Ω(t) = exp

 t∫
dt′ ¯̄η(t′)

 (3.12)
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The volume at time t is thus

Ω(t) = det

exp

 t∫
dt′ ¯̄η(t′)


= exp

tr

 t∫
dt′ ¯̄η(t′)

 = exp

 t∫
dt′tr[¯̄η(t′)]

 .

(3.13)

An exponential function of a tensor is necessarily treated as a truncated power

series, and the volume is treated similarly so the two remain commensurate. The VV

algorithm is implemented within the NPT ensemble by replacing the physical force

with fNPTj = fj − (mjγ(t) ¯̄I − ¯̄η(t))vj(t) and performing the following steps:

fNV Tj (t) ≡ fNV Tj (rj(t),vj(t), γ(t), ¯̄η(t))

rj(t+ δt) = rj(t) + vj(t)δt+
1

2mj

fNHj (t)δt2

vj(t+ δt/2) = v(t) +
1

mj

fNH(t)
δt

2

γ(t+ δt) = γ(t) +

[
Tinst(v(t+ δt/2))

T
− 1

]
δt

τ 2
T

¯̄η(t+ δt) =
Ω(t)

NkBTτP

(
¯̄σ(r(t+ δt),v(t+ δt/2),Ω(t))− ¯̄IP

)
δt

fNV Tj (t+ δt) ≡ fNPTj (r(t+ δt),v(t+ δt/2), γ(t+ δt), ¯̄η(t+ δt))

vj(t+ δt) = v(t+ δt/2) +
1

mj

fNHj (t+ δt)
δt

2

Ω(t+ δt) = Ω(t) exp (tr[¯̄η(t)]δt)

¯̄Ω(t+ δt) = ¯̄Ω(t) exp (¯̄η(t)δt)

(3.14)
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3.3 Interatomic Potentials

The accuracy of a molecular dynamics simulation depends mostly on algorithm inputs

and the behavior of the interatomic potential, the appropriate form of which depends

on the materials and physics of interest. This chapter describes some common forms

found in the literature and other possible routes of empirical expansion.

The total potential energy of a system of N atoms can be formally [48] written as

a sum of n-body contributions for n = 0, . . . , N :

V (N) = V0 +
N∑
i=1

V1(ri) +
1

2

N∑
i 6=j

V2(ri, rj) +
1

6

∑
i 6=j 6=k

V3(ri, rj, rk) + · · ·+ VN(r1, . . . , rN)

(3.15)

where the Vn are simple functions of n atomic coordinates. Henceforth any model

which can be written in the form of Equation 3.15 is referred to as a “potential,” while

forms which cannot be obtained by simply specifying the functions Vn is referred to

as a “functional.”

3.3.1 Pair Potentials

Pair potentials are the simplest approximation one can make for molecular dynamics.

They necessarily depend only on the magnitude rij of the distance between pair i, j

of atoms. They must take into account the strong repulsion at low interatomic sep-

aration, which originates from the orthogonalization between core electrons from the

different atoms, as well as the bonding and electrostatic energies of valence electrons.

The most common form, which is semi-empirical in nature, is the Lennard-Jones

potential[77]

VLJ =
1

2

∑
i

∑
j 6=i

4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
. (3.16)
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Figure 3.1: Lennard-Jones potential for a single pair of atoms. Anharmonicity of the
well is shown by comparison with a quadratic potential having the same curvature as
the LJ potential at its minimum.

The r−1/6 term is due to instantaneous dipole-dipole forces between (non-bonding)

electron clouds, while the r−1/12 term is chosen for computational convenience (squar-

ing of the previous term) to represent the strong repulsion from the Pauli principle.

This form is easily extended to multicomponent systems since each distinct pair I, J

of species simply gets its own parameters εIJ , σIJ . A plot of the Lennard Jones poten-

tial for a single pair of atoms with parameters ε = 0.25 and σ = 3.0 is shown in Figure

3.3.1. A quadratic well with the same curvature is superimposed for comparison.

Such potentials can replicate basic properties of simple close-packed metals and

noble gases, but fail even to replicate the stability of the bcc lattice because the

optimal structure is necessarily close-packed with primitive lattice constant defined

by a0 = argmin
rij

[VLJ(rij)]. LJ potentials are also incapable of reproducing elastic

anisotropy in cubic metals. Despite these limitations LJ potentials have been widely

used for atomistic modeling. However, for transition metals and alloys more so-

phisticated models, generally referred to as pair functionals, have been far more

successful.
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3.3.2 Pair Functionals

A class of interatomic potentials termed pair functionals includes the most widely-

used empirical and semi-empirical potentials for metals and alloys. They are named

as such because all pair functionals have a form which involves a mapping of some

combination of two-body functions into an energy. It is crucial for this mapping to

be nonlinear, else the form reduces to that of a simple pair interaction. Pair func-

tionals frequently include a simple pair potential in the total energy, ostensibly to

describe the internuclear energy, but certain invariances of these models destroy any

unique interpretation of the terms. The two most common pair functionals, the Em-

bedded Atom Method (EAM) and Finnis-Sinclair (FS) potentials, are described and

different generalizations to multicomponent systems, owing to the distinct theoretical

foundations of each model, are discussed.

Embedded Atom Method potentials

The EAM, developed by Baskes and Daw[78], has the following form:

VEAM =
1

2

N∑
i

N∑
j 6=i

φ(rij) +
N∑
i

U(ni) (3.17)

where

ni =
N∑
j 6=i

ρ(rij), (3.18)

where φ(r) is interpreted as an internuclear pair potential, U(n) is known as the

“embedding function,” and ρ(r) is a pair contribution to the “electronic density” n.

This model originates with the pseudo-atom formalism of Stott and Zaremba[79], who

considered the energy of an impurity atom in a host material and found a corollary

to DFT, written (in simplified form) as follows:
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Eimpurity = F [nhost], (3.19)

meaning the energy required to add an impurity into the host is a functional of the

host’s electron density only, with the functional F being determined by calculations of

the impurity energy in a uniform electron gas. This approximation was thus referred

to as the “uniform density approximation” (UDA), and was also used by Nørskov and

Lang[80] to develop the so-called effective medium theory (EMT).

As written, the forms of the pair potential φ(r), embedding function U(n) and

density ρ(r) can be parameterized analytical forms or splines.

Note that the so-called ”density” ni in EAM does not strictly represent the elec-

tronic density as it does in the Stott-Zaremba corollary. This is because there exists

an invariant transformation that mixes the functions, meaning there is no unique

interpretation of each. Using a shorthand notation where φ(rij) ≡ φij etc., this gauge

transformation can be written with arbitrary real constants ci as:

φij → φij − cjρi − ciρj

Ui → Ui + cini.

(3.20)

It is easy to prove the invariance of VEAM with respect to this transformation given

the symmetry of the pair functions, e.g. φij = φji.

Finnis-Sinclair potentials

In the language of EAM, the FS model is obtained simply by specifying U(n) = −
√
n:

VFS =
1

2

N∑
i

N∑
j 6=i

φ(rij)−
N∑
i

√
ni (3.21)
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with ni still specified by Eq. 3.18. The similarity of the two forms is due to their being

two approaches to what is essentially the same problem. EAM ultimately originates

from DFT, which of course is an approach to solving the Schrödinger equation using

the electronic density as the fundamental quantity. Stott and Zaremba found the

energy of an atom to be a functional of the electronic density of the rest of the solid

to which Baskes and Daw applied a local approximation and parameterization. The

FS model was derived by starting with a local approximation within a tight-binding

formalism, then expanding the density of states into its moments defined by

µ
(n)
I =

∞∫
−∞

εnDI(ε)dε, (3.22)

where DI(ε) is the density of states at site I. Using a gaussian form for DI and

keeping terms up to the second (the so-called second-moment approximation) results

in a −√ni energy term. Here the density ni is actually a sum of overlap integrals

SIαJβ = 〈ΨIα|ΨJβ〉 of the atomic electron wavefunctions ΨIα, where I, J are atomic

indices and α, β are orbital indices. Instead of a local approximation to DFT, the FS

model is an approximation to tight-binding theory.

This difference in interpretation of the density function leads to different general-

izations to multi-species systems. Since the EAM model by construction treats each

atom as an impurity, the embedding energy of which is a functional of the density

of the electrons from other atoms, one considers each atomic type J to have its own

density ρJ(rij) which it contributes to its neighbors. On the other hand, since SIαJβ

depends on the host and “impurity” atom, one expresses n as a sum of doubly-indexed

functions ρIJ(rij). An advantage to this is that it allows one to fit an alloy potential

using fixed single-element potentials, because there are gauge transformations which

leave the one-species terms invariant while changing the mixed pair potential and
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density functions.

3.3.3 Cluster Potentials

Both EAM and FS models were derived and intended for use in metals, but exhibit

limitations with partially-filled d-band transition metals and covalent materials. For

such systems three-body terms in the total energy play an important role from an

empirical modeling perspective. There are a number of interatomic potentials which

include terms involving more than two atoms. Here the most renown of such models,

the Stillinger-Weber potential, is described. A more general cluster potential for-

malism is the Model Generalized Pseudopotential Theory (MGPT) [81, 82], which

includes terms depending on up to four atoms.

Stillinger-Weber

The original Stillinger-Weber model was constructed with the intent of reproducing

the cubic-diamond ground state of solid silicon. The internal angles between nearest

neighbors in cubic diamond can be easily shown to be θ0 = cos−1(−1/3). By includ-

ing a three-body term which is minimized at θ0, the potential is forced to predict

tetrahedral packing. In addition to the angle-dependent term the usual pair potential

is added to describe the internuclear energy. The potential is given by

VSW =
1

2

N∑
i

N∑
j 6=i

φ(rij) +
1

2

N∑
i

N∑
j 6=i

N∑
k 6=i,j

f(rij)f(rik)

(
cos θjik +

1

3

)2

, (3.23)

where θjik is the angle of the triplet centered on atom i, typically evaluated as

cos θjik =
rij · rik
|rij| |rik|

. (3.24)
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The function f is taken to be a decaying exponential, while φ is taken to have

Lennard-Jones form with an exponentially decaying prefactor. This model has been

successful in the description of silicon and germanium as well as semi-conducting

compounds like GaN [83] and InGaN [84].

3.3.4 Cluster Functionals: MEAM and Beyond

The value of interatomic potentials traditionally lay in their ability to study trends

in material behavior with relative computational efficiency. Molecular dynamics was

used as a tool to understand basic behavior on scales impractical for first-principles

calculations. Progress in computing power has since expanded the reach of ab-initio

methods and the development of high-tech alloys exhibiting complex microstructural

properties and deformation behavior, often very sensitive to slight changes in alloying

elements, has opened a new door for empirical potentials to be used in a targeted

fashion to study these phenomena. Until significant breakthroughs occur in the effi-

ciency of ab-initio methods or the practicality of quantum computing, first-principles

calculations of alloy properties on large spatial or temporal scales will remain imprac-

tically cumbersome and molecular dynamics simulations will be needed to study the

atomistic behavior at this level.

With greater material complexity comes the need for improved model flexibility,

necessarily meaning more parameters and degrees of freedom. Empirical extensions

of existing models, such as the modified embedded atom method (MEAM) proposed

by Baskes [85], have proven valuable in studying transition metals [14, 55, 86, 87, 88]

and alloys [89]. The total potential energy in a MEAM model is given by

VMEAM =
1

2

N∑
i

N∑
j 6=i

φ(rij) +
N∑
i

U(ni), (3.25)
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where

ni =
N∑
j 6=i

ρ(rij) +
1

2

N∑
j 6=i

N∑
k 6=i,j

f(rij)f(rik)g(cos θjik), (3.26)

and θjik is the triplet angle as defined for Stillinger-Weber potentials above.

In this work two empirical extensions of MEAM are presented. The first is a

combination of a Stillinger-Weber potential with the embedding energy of MEAM:

VSW+MEAM =
1

2

N∑
i

N∑
j 6=i

φ(rij) +
N∑
i

U(ni)

+
1

2

N∑
i

N∑
j 6=i

N∑
k 6=i,j

p(rij)p(rik)q(cos θjik)

(3.27)

where again

ni =
N∑
j 6=i

ρ(rij) +
1

2

N∑
j 6=i

N∑
k 6=i,j

f(rij)f(rik)g(cos θjik). (3.28)

This is the simplest three-body extension of MEAM which cannot be gauge-

transformed back to the original potential because the sum p(r)p(r)q(x)+f(r)f(r)g(x)

cannot in general be expressed as a function of the same form, s(r)s(r)t(x), as was

seen with two-body terms in ordinary EAM potentials. This method is used to model

tungsten in Chapter 5.

The second extension is specific to alloys; the labels I, J,K are used to indicate

the species of atoms i, j and k. This form is referred to as “GMEAM” in the present

work due to the number of angular functions. The total potential energy is given by

VGMEAM =
1

2

N∑
i

N∑
j 6=i

φIJ(rij) +
N∑
i

UI(ni), (3.29)

where

ni =
N∑
j 6=i

ρJ(rij) +
1

2

N∑
j 6=i

N∑
k 6=i,j

fIJ(rij)fIK(rik)gJIK(cos θjik). (3.30)
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At first glance this looks like an ordinary MEAM potential, but further exami-

nation reveals that the density ni depends on the species of atom i. It is thus more

akin to a three-body extension of Finnis-Sinclair potentials where the “density” is in-

terpreted as a wavefunction overlap integral, which of course depends on the species

of each atom involved. Moreover, optimal corrections to the Effective Medium and

Embedded Atom approximations have been shown to depend on the electrostatic

potential[90] or electron density[91, 92, 93], of the “impurity” atom. Application of

the GMEAM form, chosen for the versatility of the sixteen functions to be fit, to

titanium-niobium alloys is the main achievement of the present work and is described

in Chapter 6.
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Chapter 4:

Optimization of Spline-Based

Empirical Potentials

Due to the complexity of the large ab initio databases and the flexibility of spline-

based potentials with many knots employed here, fitting is the most time-consuming

and computationally demanding part of the development process. It is not a straight-

forward one-time application of an optimization routine to a single fitting database.

Rather, an iterative process is required wherein about ten fits are performed simulta-

neously (referred to as a “batch”), the resultant potentials are tested and compared,

and algorithm inputs and database contents are adjusted in response to the results.

First described in this chapter are the parameterizations of functions through cubic

and quintic splines. The algorithms employed during optimization are then presented.

In the end, the testing procedure and appropriate response to particular results such

as under- or over-fitting and certain characteristics of the splines themselves, are

discussed.
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4.1 Spline-based parameterization

Spline functions take many forms but the most common are cubic splines, which are

piecewise polynomial functions of degree three. A spline function of degree d consists

of a set of N points called knots which are sequential along the independent axis, and

a set of N − 1 polynomials of degree d connected in a piecewise fashion at the knots.

In order to evaluate the spline function, one must determine the d+ 1 coefficients for

all N − 1 polynomials.

The (N − 1)(d + 1) unknowns require a commensurate number of equations to

determine. Each polynomial is fixed to the value of the knots which flank it, providing

2(N − 1) equations. At each interior knot (i.e. not end-points) the splines on either

side are required to be continuous up to their derivative of order d − 1, giving an

additional (d− 1)(N − 2) equations. The remaining d− 1 unknowns are determined

by boundary conditions specifying some derivatives at each end-point. The user has

some freedom in choosing which derivatives should be specified based on intended

application.

Since cubic splines have discontinuous third derivatives, there are intrinsic limi-

tations to how well they can model certain properties. For example, a cubic spline

function will exhibit kinks in any quantity depending on second derivatives of the

potential (e.g. Cij-P curves). If more accuracy for such properties is required, splines

of higher degree can be used. In the present work, a potential parameterized by

quintic (degree 5) splines is applied to high-pressure properties of tungsten. A cubic

parameterization is sufficient to model Ti-Nb alloys at ambient pressure.
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4.1.1 Boundary conditions for spline-based interatomic po-

tentials

As discussed in Section 3.3, radial cutoffs defining the range of interaction are neces-

sary in any interatomic potential. When parameterized by spline functions, boundary

conditions consistent with the physical system must be supplied at these cutoffs. In

all cases the first derivative at the outer cutoff should be “clamped” to zero such

that forces vanish smoothly with interatomic separation. No such argument can be

provided for the inner radial cutoff, so a “natural” spline is typically used. For d = 3

a natural spline amounts to setting the second derivative be zero at the endpoint.

Cluster functional potentials, such as those which are the topic of the present work,

require boundary conditions for angular and embedding functions as well. In general

the embedding function boundaries should be natural, as this is the least restrictive

BC and the embedding term is the most important part of the potential in terms

of fitting error. A user has the most freedom in dealing with the angular functions.

In the present work the angular functions are given natural boundary conditions.

During the course of fitting, however, some success has been found in clamping the

knot and first derivative to zero at cos(θ) = −1. It is worth experimenting with

different conditions, as the best may vary from system to system.

4.1.2 Non-invariance of splines under rescaling

It is sometimes advantageous to re-scale the domain the embedding function during

the course of fitting. This can help keep the embedding function constrained to a

given range, but does not conserve forces, stresses or energies upon transformation.

Let U(ρ) be a spline function and α a real-valued scalar. The domain of the function
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U can be re-scaled by performing the following transformations:

U(ρ)→ U(ρ/α)

ρ→ αρ.

(4.1)

If U(ρ) were an analytic function, this gauge transformation would preserve the

total energy for arbitrary α. For spline functions the process of rescaling requires a

redefinition of the knot boundaries, and maintaining an even spacing between knots

necessitates sampling interpolated values for use as new knot values. The process

of re-scaling is outlined algorithmically below. Let U(ρ) be the original embedding

function with N spline knots {xi, yi} and Ū(ρ̄) be the new spline with knots {x̄i, ȳi}:

• Compute the set {ρ} of ρ values in the fitting database

• Determine ρmin and ρmax from {ρ}

• Set boundaries of new embedding function Ū to be ρmin and ρmax:

x̄1 = ρmin, ȳ1 = U(ρmin)

x̄N = ρmax, ȳN = U(ρmax)

• Determine remaining N−2 evenly spaced (by ∆ρ) knots for Ū and take y-values

from U(ρ):

x̄i = ρmin + i∆ρ, ȳi = U(x̄i)

• Determine scaling factor to keep the domain of Ū in [−1, 1]:

ρbound = max(−ρmin, ρmax)

α = 1/ρbound

• Rescale new knots and densities
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Figure 4.1: Demonstration of non-invariance of a linear spline under change of the
domain. The original function is shown in blue, with knots represented as points. The
rescaled function is shown similarly in red. Arrows indicate the minimum and max-
imum sampled values of the original domain. These values become the boundaries
of the re-scaled spline and knots are distributed equally between them with y-values
computed from the original function. The two functions differ in regions where suc-
cessive re-scaled knots do not lie between the same two original knots. Note that this
is a view before the new function’s boundaries are scaled toward [−1, 1].

x̄i = αx̄i

ρ̄ = αρ̄

Figure 4.1 demonstrates the invariance of linear splines under the described re-

scaling procedure. Changing the distribution of spline knots across the function

provides a new spline which is not identical from the first, since the y values of

the new knots are taken as interpolated values from the old function. Rescaling the

embedding function of a pair functional does not conserve forces, stresses or energies

and thus serves as a “mutation” in the language of evolutionary optimization.

Triplet terms in the potential are re-scaled along with the embedding function and

total density in such a way as to keep the maximal value of radial prefactors fixed at

unity. This is done e.g. for the “GMEAM” potential by simple multiplication and
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division of the functions:

fIJ(rij)→ fIJ(rij)/f
max
IJ

fIK(rik)→ fIK(rik)/f
max
IK

gJIK(cos θjik)→ fmaxIJ fmaxIK gJIK(cos θjik).

(4.2)

Rescaling of the three-body terms does not require a changing of spline boundaries

and so does not serve as a genetic mutation to the potential.

4.2 Global optimization via genetic algorithm

In the present work, the objective function for optimization is a weighted mean-

squared error following the force-matching method of Ercolessi and Adams[1].

Z(y) =
C∑
i

W 2
i

(
Qi(y)−QDFT

i

)2
, (4.3)

where y is the vector of spline-knot free parameters and C is the number of configura-

tion properties Qi (stresses, forces, energies) in the database. For the high-flexibility

empirical potentials employed here, y has around 200 components and C is on the

order of 104. The objective function Z(y) is in general non-convex and potentially

littered with local minima. The regions of y-space for which Z(y) is convex around

some minimum are known as “basins,” and will trap any local optimization algorithm

to their corresponding minimum.

Genetic (or “evolutionary”) algorithms (GA) have found wide success as versatile

global optimization methods. The idea is based on treating variables as traits or

genes, with points in the n-dimensional space being thought of as members of a

population (here typically ∼10-20) which “breed” with one another at each iteration.
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The generality of this idea is a major contributor to its success in both discrete and

continuous optimization problems. Practitioners have a large degree of flexibility in

defining the manner and order in which members of the population are bred.

Basin-hopping is an inherent property of genetic algorithms provided a population

is properly initialized such that all of the members do not lie in the same local

basin. Including mutations, or random perturbations to a member’s genes inspired

by biological evolution, can provide an effective means of basin hopping even for a

population confined to a single local basin.

This section details the evolutionary optimization scheme used to produce em-

pirical potentials presented in Chapters 5 and 6. The program was written by Dr.

Jeremy Nicklas, and further details are described in his Ph.D. thesis [94].
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Figure 4.2: Diagrammatic representation of the global optimization scheme. Ovals
represent the beginning and end of the algorithm, with lists of input and output
quantities respectively. Rectangles are functional steps in the algorithm and diamonds
are “if” statements. The population is deemed “converged” is the change in total
error for every member of the population is less than 10−3. Partner selection and the
breeding algorithm itself are discussed in more detail below.

Figure 4.2 describes the global optimization algorithm from inputs to outputs. The

user provides a database of ab-initio forces, stresses and energies, an initial potential

from which the rest of the population is seeded, the size of said population, the

number of local conjugate-direction steps taken for each generation between breeding

iterations, weights for quantities in the database, breeding, fitting and re-scaling

rates. Outputs include the final population, a LAMMPS-format file for the best fit

potential, and error information for the entire database.
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A hybrid method is used wherein each new generation of potentials undergoes

local optimization via Powell’s method [95] for a fixed number of steps provided as

input. The reason for this is due to the spline parameterization. If two members of a

population are dissimilar (e.g. qualitatively different behavior of an angular function),

breeding may result in a child potential with much higher error than either of the

parents. This is due to the piece-wise nature of spline functions, the long-range effects

of strong derivatives at knots, and the “crossover” manner of breeding employed here.

Figure 4.3: Diagrammatic representation of the algorithm used to breed two parent
potentials to form a member of the next generation. Flowchart shape meanings are as
described above and symbols are defined in the key. Knots are taken from the current
parent P until a random number q is generated to be less than the input crossover
rate c. The process ends when all child knots have been assigned y values.

Figure 4.2 describes the breeding of spline-based potentials within the evolutionary

algorithm. Mutations are implemented by generating a uniform random number r and
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checking it against the mutation rate m. If m < r, the knot is taken from a randomly

chosen member of the population with lower fitness than the parents. Otherwise

another uniform random number q is generated and compared to the “crossover” rate

c. If q > c, the active parent P is switched and a knot is taken from it. If q < c a

knot is taken from P without switching the active parent. A typical crossover rate

for the present work is 20%, while mutation rates are typically ∼ 0− 5%. Crossover

breeding allows important features of the parent potentials to be mixed, but can

result in long-range oscillations of the splines.
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Figure 4.4: Crossover-breeding of two cubic spline functions. The first and second
parents are shown in blue and orange, respectively, and the child is shown in black.
A hypothetical post-downhill “relaxed” child function is shown in grey. Crossover
points are depicted by vertical grey lines. When splines are significantly dissimilar
(i.e. when their difference is much greater than their derivatives across successive
knots), the child potential exhibits strong oscillations (and thus unphysically large
forces) at and near the crossover. Powell optimization on the child potential will tend
to smooth out the knots and reduce the oscillations in the splines while potentially
evolving new features such as the hump shown the “relaxed” curve.

Figure 4.2 shows the “crossover” breeding of two dissimilar cubic spline functions.

The child potential takes knots from the first parent (blue) until q < c is satisfied

(see Figure 4.2), whence knots are taken from the second parent (orange). Strong

derivatives are exhibited by the child function (black) at and near the crossover points.

Since the splines are forced to have continuous derivatives at the knots, nearby splines

exhibit oscillation as a result of the large difference between parent functions at the
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Figure 4.5: Diagrammatic representation of the algorithm used to determine breeding
partners at each step in the evolutionary optimization. Rectangular panels represent
algorithmic steps where commands are executed from top to bottom. Diamonds
represent “if” statements and ovals represent the beginning and end. The two most-
fit potentials are always copied into the next generation by breeding with itself. The
first and second most fit potentials are also forced to breed.

crossover points. This effect is less pronounced when the difference between parent

functions is small. A “relaxed” spline is shown in grey, representing the hypothetical

child function after undergoing local minima. Breeding dissimilar splines can produce

new genetic features, represented here by the hump in the relaxed function.

Figure 4.2 shows the method used for determining breeding partners in a sorted

fashion. In all cases the best and second-best potentials are cloned to form the first

two members of the next generation. The third member of the next generation is

formed by breeding these top two and subsequent partners are chosen based on a

uniformly generated random number q and a user-supplied “fitting rate” f . The use

of hierarchical breeding in this fashion decreases the chances that a bad potential’s
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Figure 4.6: Algorithmic flowchart for Powell’s conjugate direction optimizer.

genes are passed on to the next generation, but the gene pool tends to be dominated

by the top two potentials after a few generations. Saturation of the gene pool can be

balanced by increasing the mutation and fitting rates.

The Powell[95] conjugate direction algorithm used in local optimization is useful

for functions without a pre-defined mathematical form because no derivatives are

necessary. The idea is to have a set of basis vectors, typically initialized as unit

vectors in the multivariate space, and to perform a line-search optimization using

linear combinations of these basis vectors. An algorithmic flowchart is shown in Figure

4.2. Since the local optimization is performed for every potential in a population,

increasing the number of steps nmax can be computationally costly. In the present

work, 20 to 60 steps was found to be effective.
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Figure 4.7: Comparison of Powell optimization performance for two functions. Points
and lines show iterations of the algorithm from different starting positions. Global
minima are marked by a white asterisk. Powell’s algorithm finds the global minimum
of the Rosenbrock function (left) within about 10 iterations, but quickly converges to
local minima when they are near the starting position (right).

4.3 Performing the right fit

It is not uncommon for simple potentials (e.g. Lennard-Jones or Finnis-Sinclair)

to be fit to a small amount of very particular data, for example vacancy formation

and migration, then employed for that purpose and rarely used again. Such models

are said to have low transferability if their predictive power outside of the intended

application is low.

Potentials with low transferability can be useful for extrapolating first principles

data to system sizes impractical for O(N3) algorithms. However, practitioners must

be careful when choosing a model, and the safe region of study is limited by the

potential of choice.

It is thus desirable to produce an interatomic potential which can safely be used to

study all — or at least most — of the interesting physical properties of a given system.

98



This necessarily means a larger fitting database, more free parameters in models,

and thus a more complicated optimization procedure. Most advanced optimization

algorithms (other than those intended specifically for convex spaces) involve some

stochastic element, meaning they can give very different results when run twice on

the same database. In general no optimization scheme can give a precise guarantee

that the global minimum has been located without fully sampling the entire parameter

space.

Such a large amount of variability typically means a large number of fits will

be performed when searching for the “optimal” model. Mathematical optimization

aside, the question of which database should be fit to in the first place is one which

depends on the goals and time (in CPU- and man-hours) of the practitioner, but is

not a simple “a-la carte” decision due to correlations between fitting data.

There is no clear prescription for navigating this complex problem of “choosing

the right fit,” and intuition plays a significant role, but there are some rules of thumb

which can typically be followed to at least get close to the right potential.

The general process is an iterative one where one fits a “batch” of ten to twenty

potentials, tests them for a variety of properties compared to DFT and experiment,

and analyzes the results. This section discusses some common situations encountered

during the development process and appropriate responses to them, particularly for

spline-based MEAM and MEAM-like models.

4.3.1 Under-fitting and over-fitting

One of the most important steps in fitting any model is obtaining a balance of free

parameters and data to be fit. The precise ratio in general depends on the complexity

of the model and data as well as the manner of parameterization, but the consequences

of imbalance are commonly referred to as “under-fitting” and “over-fitting.”
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Figure 4.8: Simple examples of (a) under- (b) well- and (c) over-fit models. Red lines
show model predictions while fitted points are shown in blue. The underlying data is
a cubic polynomial with a sinusoidal random signal added.

When a model has too much flexibility, it can often match precisely every data

point to which it’s fit while destroying all predictive power. An over-fit interatomic

potential is one with too many free parameters, where fitting error is very low but

transferability is negligible. Such potentials will often incorrectly interpolate between

widely spaced data points, so even simple properties like energy-volume curves could

be wildly unphysical. As a result, over-fit potentials are easy to identify.

In contrast, a model with too little flexibility to match the fitting database is said

to be “under-fit.” Such potentials will often be more realistic than over-fit ones, but

will nonetheless exhibit significant fitting and testing errors. Examples of under-fit,

well-fit and over-fit models are shown in Figure 4.3.1 (a), (b) and (c), respectively.

4.3.2 Saturating the spline functions

While spline parameterizations are useful for their implicit flexibility, care must be

taken to ensure that the domains of each function are saturated with data such that

each knot contributes to the fitting error. Since the first and second derivatives are

forced to match at each knot, the forces derived from one knot are affected by the

value of its neighbors. However, this is not in general sufficient to prevent a function

from exhibiting unphysical oscillations in regions (i.e. angles, radii or total densities)

which are not sampled in the database.
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Figure 4.9: Examples of (a) a properly fit spline model (b) an under-saturated spline
model and (c) an over-fit spline model. Red lines show cubic spline interpolants, red
points represent spline knots and data points are shown in blue. One cannot in general
distinguish an under-saturated spline from an over-fit spline without examining the
distribution of data. Note that the over-fit model uses twice the number of spline
knots to fit the same data set.

There is no clear way to discern an over-fit function from one whose domain has

not been saturated aside from viewing the distribution of sampled angles, radii and

total densities in comparison to the distribution of spline knots. Database contents,

radial cutoffs and numbers of knots for each function should be chosen to ensure

saturation before fitting in order to avoid mistaking an under-saturated potential

from an over-fit one. Useful configurations for filling gaps include generalized stacking

faults, ideal shear curves and high-temperature snapshots, the latter being the most

effective at sampling many radii and triplet angles. Figure 4.3.2 provides examples

of (a) a properly fit spline function, (b) an under-saturated spline and (c) an over-fit

spline.

4.3.3 Trends within a batch of potentials

When performing ten or more fits simultaneously it is most efficient to present test

results in a graphical fashion so as to quickly locate good models and spot patterns

between fits in a batch. For this purpose a radial %-error presentation is employed

wherein the radius r = 1 is defined as zero error, the origin is -100% and r = 2 is

+100%. Batches are presented using a simplified version of these plots in an HTML
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Figure 4.10: Representation of the fitting error in a radial distribution format. (a)
shows the error for a single potential, with labels on each radial ray and the error
axis. (b) shows a batch of ten fits with unlabeled radial graphs side-by-side for easy
comparison.

table for easy access. An example presentation of (a) a single potential and (b) a

batch is given in Figure 4.10.

Test results are a strong indicator of the quality of a fitted potential, but it is

difficult to identify overfitting without examining the spline functions themselves.

Figure 4.11 compares functions of (a) a well-balanced fit where model functions are

smooth and (b) an over-fit potential where the number of parameters was too large

for the size of the data set. Smooth functions do not guarantee a well-balanced fit,

since “underfitting” (more data than the parameters can handle) will always produce

smooth potentials with high fitting error.

Assuming the DFT calculations comprising the fitting database are well-converged,

a number of conclusions can be drawn just by comparing potentials in a batch:

(1) If the distribution of errors is not consistent between most of the fitted potentials,

the algorithm is not producing a reliable estimate of the global minimum with the

provided parameters. Changes should be considered depending on the behavior of

the splines:

i. If the spline functions (radial ones in particular) oscillate wildly, increasing
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Figure 4.11: Splines functions from two GMEAM models: (a) A well-converged fit
with smooth spline functions and sensible behavior at boundaries. (b) An overfit
potential with too many parameters, where functions display frequent oscillation and
non-physical behavior at the boundaries.

the number of local optimization steps can be useful. If a large number of

Powell steps is already being used or increasing the number has little effect,

the potential is probably being over-fit and fewer knots and/or more data are

needed.

ii. If the spline functions are smooth, underfitting is likely and more parameters

are needed.

(2) If the total fitting and testing errors are consistently high across the batch and:

i. splines are smooth and similar, under-fitting is the problem and more knots

and/or fewer data are needed.

ii. splines are oscillatory and dissimilar, more downhill steps are needed.

iii. splines are dissimilar but not wildly oscillatory, more “genetic diversity” is

needed by increasing the breeding, rescaling or mutation rates.

(3) If the fitting error is consistently low but testing error is high, the fitting database

needs to be refined depending on the behavior of the splines:
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i. If the splines are smooth and consistent, a good balance of data to parameters

has been found. In this case, related configurations in the database (e.g. close

points on an E-V curve or a transition pathway) should be removed and replaced

with data for which the potentials performed poorly in testing.

ii. If the splines are highly oscillatory, over-fitting is likely and the database should

be expanded with configurations where tests were unsatisfactory.

(4) If the fitting and testing errors are consistently low, a global minimum has likely

been found. At this point, fine-tuning the potential by adjusting weights of ener-

gies, stresses, or individual configurations can be done. Data can be added, but a

practitioner should be careful not to upset the balance of parameters and database

size.
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Chapter 5:

Cluster Functional for Tungsten

In this chapter we develop a unique semi-empirical potential based on a robust

database of ab initio calculations that samples much of the potential-energy land-

scape. Our model combines the Stillinger-Weber (SW)[96] form with the modified

embedded atom method[97] (MEAM) form with functions parameterized by quintic

splines. The potential was fit by Dr. Jeremy Nicklas [94] and applied to high-pressure

phase transitions by the present author [98]. Section 5.1 describes the density-

functional theory (DFT) calculations comprising the large fitting database. Accu-

racy of the fitted potential is demonstrated in Section 5.2 by comparing SWMEAM

to DFT for the various structural and elastic properties to which it was fit. Given that

the potential is fit directly to important crystallographic defects, structural proper-

ties and elastic constants, transferability is demonstrated in Section 5.3 by examining

SWMEAM predictions for 1
2
〈111〉 screw dislocation core structure, deformation twin-

ning and detwinning of a nanorod, and dynamics of bcc and fcc tungsten at high

pressure. Conclusions are given in Section 5.4.
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5.1 DFT database and fitted parameters

The ab-initio fitting database contains 596 configurations with a total of 16,860 atoms

and thus 54,752 force components, stress components and energies to be fit. Con-

figurations in the database include volumetric strains of bcc, fcc, hcp, β-W (A15),

β-Ta (β-U) and ω-Ti. Tetragonal strains are included for hcp and ω-Ti structures to

ensure accurate c/a values. The database also contains elastic constants of the bcc

phase at pressures between 0 and 100 GPa, in increments of 25 GPa, using volume-

conserving orthorhombic and monoclinic strains of 0.5 % for C ′ = 1
2
(C11 − C12) and

C44, respectively. At zero pressure, configurations with orthorhombic strains up to 10

% and monoclinic strains up to 40 % are added. Unrelaxed symmetry-inequivalent

configurations of 〈110〉 and 〈112〉 γ-surfaces, ideal shear strain and vacancy migration

are included at five equally spaced pressures between 0 and 100 GPa. Relaxed zero-

pressure structures containing a vacancy at the lattice site and halfway along the 〈111〉

migration path are also added. A 7×7×7 bcc supercell with a single atom displaced

by 0.006 Å ensures accurate force-constants and phonons via the small-displacement

method[99, 41]. Using a supercell of this size reduces the interaction of the displaced

atom with its images across periodic boundaries and thus improves the accuracy of

calculated force-constants and phonon dispersions. Relaxed low-index free surfaces as

well as crowdion, octahedral, 〈111〉-split and 〈110〉-split self-interstitial configurations

are included. Ab-initio MD snapshots of 125-atom bcc supercells at 1620 K, 2960 K

and a liquid tungsten at 6730 K are added to improve performance for simulations

at high temperature. A 36-atom hcp supercell at 100 K is also included. A Lastly, a

mesh of 36 points on the Bain[60] (bcc-fcc) and Burgers[59] (bcc-hcp) energy surfaces

at pressures of 0 GPa and 700 GPa in addition to 600 GPa for the Bain path and

800 GPa for the Burgers path are included to ensure that the potential can be used
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to explore properties of these close-packed phases at extreme pressures.

Parameters for the fitted potential and plots of the final splines are given in Table

5.1 and Figure 5.1 respectively.

Figure 5.1: The seven quintic splines comprising the functions of our SWMEAM
model. The embedding function here is given the symbol F (n).

5.2 Accuracy of the fitted potential

We demonstrate the accuracy of the fitted SWMEAM potential through the energet-

ics of non-equilibrium structures, crystallographic defects, thermodynamic properties

and phonon dispersion. All SWMEAM calculations in this work (other than those

necessary for fitting) are performed in the Large-scale Atomic/Molecular Massively

Parallel Simulator (lammps)[100]. Compatibility of the module has been verified for

lammps versions as recent as 17 November, 2016. If at any step during an MD run

the density seen by an atom exceeds the embedding function domain, the embedding

energy is linearly extrapolated from the nearest endpoint.
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Table 5.1: Parameters specifying the seven cubic splines of the SWMEAM tung-
sten potential. The first part of the table lists independent variables for each
spline function, the bounds of such, and the number of spline knots N . In the
middle part, values of the spline functions are tabulated for each knot i, where
ti = tmin + (i − 1)(tmax − tmin)/(N − 1). Lastly, first derivatives are listed for each
spline at its endpoint.

φ ρ U f g p q

t r [Å] r [Å] n r [Å] cos(θ) r [Å] cos(θ)
tmin 1.936 1.936 0.231451 1.936 -1.00 1.936 -1.00
tmax 6.50 6.50 1.00 6.50 1.00 6.50 1.00
N 30 30 8 30 35 30 35

i φ(ri) [eV] ρ(ri) U(n) [eV] f(ri) g(xi) p(ri) q(xi) [eV]
1 8.17754794 0.34354505 -5.61454815 1.00000451 0.01826953 -1.00355858 0.03275867
2 4.78088386 0.21248938 -7.13213530 0.59803251 -0.02895637 0.20528502 0.00908138
3 2.76877268 0.14610410 -8.03756015 0.42174644 -0.04189862 0.74087499 0.00625761
4 1.46070080 0.11067492 -8.61953525 0.38588088 -0.04592673 0.91254496 0.00010593
5 0.64017812 0.07925502 -8.94487218 0.32281049 -0.03450663 0.78648214 -0.00154648
6 0.20082462 0.05773259 -9.06465740 0.24776621 -0.01456063 0.82030055 -0.00285253
7 -0.00765327 0.04145698 -9.07252007 0.16176067 0.00164664 0.88605788 -0.01075190
8 -0.10152106 0.02676237 -8.98725594 0.06295668 0.00808308 0.95485119 -0.01295875
9 -0.09072809 0.01461594 – -0.05352359 0.03015642 0.93639061 -0.01060539
10 -0.03360000 0.01025421 – -0.12298181 0.05630755 0.80917294 -0.00725918
11 -0.01263542 0.00743289 – -0.15336078 0.07257101 0.26181009 -0.00644182
12 -0.04609033 0.00312525 – -0.16835342 0.06806116 -0.34277179 -0.00705714
13 -0.09178435 -0.00007454 – -0.15045670 0.05831171 -0.56718711 -0.00411671
14 -0.12451900 -0.00144470 – -0.12148391 0.04964783 -0.57293020 -0.00294010
15 -0.13252729 -0.00080199 – -0.10079003 0.03568623 -0.55459986 -0.00439403
16 -0.11926969 0.00044550 – -0.08713686 0.03376337 -0.49005332 -0.00484268
17 -0.10168872 0.00142523 – -0.07416516 0.04927750 -0.35497080 -0.00374903
18 -0.08543444 0.00170742 – -0.06395072 0.04988678 -0.21733041 -0.00567228
19 -0.06753495 0.00143689 – -0.05841828 0.04155554 -0.07601496 -0.01087031
20 -0.04517064 0.00096186 – -0.05333600 0.03071994 0.05621734 -0.01747516
21 -0.02724563 0.00011312 – -0.04830354 0.02661144 0.12120550 -0.01587746
22 -0.01558261 -0.00083410 – -0.04680635 0.02515616 0.08589555 -0.00888091
23 -0.00722958 -0.00184725 – -0.04563719 0.02305014 0.02426416 -0.00090735
24 -0.00526288 -0.00288883 – -0.04204248 0.01333036 -0.00950960 0.00463563
25 -0.00738615 -0.00349420 – -0.03559011 0.00344994 0.00582449 0.00027324
26 -0.00672710 -0.00318169 – -0.02703034 -0.00616400 0.05373423 -0.00829522
27 -0.00345596 -0.00211846 – -0.01676385 0.00075618 0.08057652 -0.00451289
28 -0.00067225 -0.00098092 – -0.00801562 0.03134535 0.06074919 0.00590844
29 0.00018443 -0.00028357 – -0.00238667 0.06236685 0.02015950 0.00434745
30 0.00000000 -0.00000000 – 0.00000000 0.09427033 0.00000000 0.00293599
31 – – – – 0.10348664 – 0.00052140
32 – – – – 0.16594669 – -0.01363307
33 – – – – 0.45196039 – -0.00205961
34 – – – – 0.60528155 – 0.03072894
35 – – – – 0.91946180 – 0.11345596

i φ′(ri) [eV/Å] ρ′(ri) [Å−1] U ′(n) [eV] f ′(ri) [Å−1] g′(xi) p′(ri) [Å−1] q′(xi) [eV]
1 -26.28469957 -1.06808883 -17.15418928 -3.28496099 -1.20699864 10.36595022 -0.68561309
N 0.00000000 0.00000000 1.22019954 0.00000000 8.53609196 0.00000000 1.97868195
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Figure 5.2: (a) Comparison of energy-volume curves between SWMEAM and DFT
for six crystal structures. Curves are ordered vertically according to the key. Our
empirical potential reproduces the energies of each phase relative to that of the bcc
ground state. (b) Pressure-volume relation for tungsten as computed by SWMEAM
and DFT at 0 K compared with data from shock experiments[101] at room tempera-
ture. SWMEAM shows agreement with both experimental and ab-initio results, even
at extreme pressures. (c) Thermal expansion of tungsten predicted by SWMEAM
agrees with experimental data fit[102] up to the melting point of 3695 K.
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5.2.1 Energetics and elastic properties

Figure 5.2(a) shows the GGA-DFT and SWMEAM energy-volume relations for six

distinct phases including A15 β-W and high-energy close-packed structures. SWMEAM

accurately predicts energies of all six phases relative to the ground state. An equilib-

rium bcc lattice constant of 3.189 Å is predicted by both GGA-DFT and SWMEAM,

compared to the published experimental values between 3.15 and 3.165 Å[103, 104,

105]. It is well known now that GGA tends to overestimate the lattice constant of

metals; the reason for this is discussed in Wang et al.[106] as well as Favot and Dal

Corso[107] and references therein.

Figure 5.2(b) compares bcc tungsten pressure-volume relations as computed with

SWMEAM, GGA-DFT, and measured through shock experiments[101]. SWMEAM

and GGA-DFT curves, obtained by static calculations of volumetric strain, are in-

distinguishable for pressures through 800 GPa and in excellent agreement with ex-

perimental results up to 300 GPa, indicating applicability of the fitted SWMEAM

potential to high-pressure physics in tungsten.

Figure 5.2(c) compares linear thermal expansion predictions by SWMEAM to ex-

perimental results[102] for temperatures between 300 K and the experimental melting

point of 3695 K. Constant N-P-T MD simulations of 2000 atoms at P = 1 atm yield

the thermal-expansion curve. Each MD simulation runs for 50,000 steps with a 1

fs timestep and the lattice constant for each temperature is determined by averag-

ing over the last 5,000 simulation steps. SWMEAM shows excellent agreement with

experiment up to 1,000 K and remains within 1 % of the experimental fit for all tem-

peratures considered, indicating that the potential interpolates between temperatures

included in the fitting database.

Table 5.2 shows the zero-pressure bcc elastic constants of the present SWMEAM
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Table 5.2: Zero-pressure elastic constants of bcc tungsten in GPa.

B C11 C12 C44

SWMEAMa 319 550 204 147
GGAa 304 513 199 142
F-Sb 309 520 204 161
LDAc 320 552 204 149
F-Sd 310 525 203 159
F-Se 310 522 204 161
EAMf 308 520 202 159
BOPg 310 522 204 161
Expt.h 308–314 501–521 199-207 151–160
aSWMEAM and GGA-DFT results of this work.
bFinnis-Sinclair results of Wang et al.[19]
cLDA-DFT results of Einarsdotter et al.[57]
dFinnis-Sinclair results of Derlet et al.[17]
eFinnis-Sinclair results of Ackland et al.[13]
fEAM results of Zhou et al.[16]
gBond-order potential results of Mrovec et al.[18]
hExpt. results of Bolef et al. from 77 to 500 K[108]

and GGA-DFT results, compared to previous ab initio calculations and other inter-

atomic potentials. The bulk modulus B and C11 predicted by SWMEAM are higher

than experimental and GGA results but consistent with the LDA work of Einarsdot-

ter et al.[57]. The pressure-dependence of bcc elastic constants is shown in Figure

5.3; SWMEAM does not predict a monotonic increase of Cij but remains within 21

% of the GGA-DFT values.
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Figure 5.3: Elastic constants versus pressure for bcc tungsten as computed with GGA-
DFT and the fitted potential. SWMEAM produces elastic constants within 21% of
the DFT values for all pressures shown.

Figure 5.4 shows phonon dispersion of equilibrium bcc tungsten as computed with

SWMEAM and DFT, compared to inelastic neutron scattering results of Chen and

Brockhouse[109]. Dispersions are calculated using the finite-displacement method

in a 7×7×7 primitive bcc supercell. DFT dispersion agrees well with experiment

but exhibits oscillations in the longitudinal (low-lying) branch near the H-point,

a feature also found in density-functional perturbation theory results within LDA-

DFT[57]. Overall SWMEAM tracks both DFT and experiment but underestimates

the frequency along the L[ξξξ] branch, particularly near the ω mode at ξ = 2
3
.
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Figure 5.4: Phonon dispersion for bcc W at zero pressure as calculated by DFT
and SWMEAM, compared with inelastic neutron scattering data of Chen and
Brockhouse[109].

5.2.2 Point and planar defects

Table 5.3 lists the energies of vacancies and self-interstitial atoms (SIAs) in bcc tung-

sten, essential quantities for the accurate modeling of plasticity. Present SWMEAM

and DFT calculations use a 5×5×5 cubic supercell. Atomic positions are relaxed

to 0.01 eV. Geometric details of bcc SIA calculations can be found in Xu and

Moriarty[112]. GGA-DFT calculations of Becquart et al.[110] and the present work

indicate the 〈111〉-dumbell to be the most energetically-favorable self-interstitial, as

do the present SWMEAM potential and F-S potentials of Derlet[17] and Ackland[13].

Experiments[113, 114] and previous MD studies[16] found the 〈011〉-dumbell to be the

favored self-interstitial structure in tungsten, but recent work[115] combining the ob-
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Table 5.3: Table of vacancy and self-interstitial formation energies (in eV) for bcc
tungsten. Entries with angle-brackets indicate that the defect in question relaxes to
the dumbell configuration shown.

Defect SWMEAMaGGAa F-Sb GGAc F-Sd F-Se EAMf GGAg

Vac. Formation 2.99 3.17 3.58 3.11 3.56 3.63 3.57 3.56
Vac. Migration 1.73† 1.70† 1.43 1.66 2.07 1.44 2.98† 1.78
Vac. Activation 4.72† 4.87† 5.01 4.77 5.63 5.07 6.55† 5.34
〈001〉 Dumbell 11.15 〈111〉 11.53 11.74 11.51 9.82 12.20 11.49
〈011〉 Dumbell 9.98 10.64 9.86 10.10 9.84 9.64 9.704 9.84
〈111〉 Dumbell 9.73 10.31 9.58 9.82 9.55 9.82 10.56 9.55
Octahedral 11.76 12.42 11.72 11.99 11.71 10.02 12.03 11.68
Tetrahedral 10.54 〈111〉 10.93 11.64 11.00 10.00 〈011〉 11.05
†Unrelaxed calculation by present authors.
aSWMEAM and GGA-DFT results of this work.
bFinnis-Sinclair results of Wang et al.[19]
cGGA-DFT results of Becquart et al.[110]
dFinnis-Sinclair results of Derlet et al.[17]
eFinnis-Sinclair results of Ackland et al.[13]
fEAM results of Zhou et al.[16]
gGGA-DFT results of Nguyen-Manh et al.[111]

ject kinetic monte carlo (OKMC) method with dislocation loop measurements found

OKMC simulations of 〈111〉 interstitials and 1D migration best match experiment.

Vacancy formation and migration energies predicted by SWMEAM compare favor-

ably with present ab-initio results and those of Becquart and Domain[110] while

existing F-S and EAM tungsten potentials are in closer agreement with GGA results

of Nguyen-Manh et al.[111].

Figure 5.5 presents unrelaxed vacancy migration pathways at five equally-spaced

pressures between 0 and 100 GPa. Calculations are performed using a 127-atom

4×4×4 cubic bcc supercell with migration in the 〈111〉 direction. Overall SWMEAM

tracks well with the DFT results; minor discrepancies are found when the vacancy

lies near the lattice site and halfway between two lattice sites.
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Figure 5.5: Vacancy migration pathway as calculated in GGA-DFT and SWMEAM
at multiple pressures. The shallow local minimum at 〈1

2
1
2

1
2
〉 is predicted by both

DFT and SWMEAM to increase between 0 and 100 GPa, though this effect is non-
monotonic in SWMEAM.

Figure 5.6 shows unrelaxed generalized stacking fault energies (GSFEs) at five

pressures on the {112} and {110} planes as a function of relative displacement along

〈111〉 for SWMEAM and DFT. While bcc metals are less prone to stacking-fault

formation than their close-packed counterparts, they have been observed in Fe, Nb,

W and Mo-35%Re to exist on {112} and {110} planes, formed by the dissociation of

1
2
〈111〉 dislocations[116]. Relaxed GSFE curves, computed with SWMEAM at zero

pressure, do not predict the presence of any metastable stacking fault configurations.

At all pressures, SWMEAM agrees with DFT to within a few meV/Å2, and thus

should be suitable for studying the effect pressure on {112}〈111〉 and {110}〈111〉 slip
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systems.

Figure 5.6: Unrelaxed low-index generalized stacking fault energies (GSFE) for bcc
tungsten. SWMEAM accurately models the evolution of both {110} and {112} faults
with pressure. Relaxed GSFE curves computed with SWMEAM are shown as dotted
lines for 0 GPa. Relaxation lowers fault energy slightly but does not result in any
metastable configurations.
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Table 5.4: Energy and structural relaxation of low-index free surfaces in bcc tungsten.
Surface energies E are given in meV/Å2 and the changes ∆12 in inter-planar spacing
between the first two planes of the surface, where available, are given in units of
percent.

SWMEAMaGGAa F-Sb GGAc F-Se GGAf AMEAMfBOPg MEAMhExpt.i,j

E001 233 245 186 289 183 487 373 237 243 —
∆001

12 -5.7 -11.5 -0.9 — -0.7 — — -2.5 -3.2 —
E011 198 200 159 249 161 398 353 163 214 —
∆011

12 -3.8 -3.8 -1.1 — -0.5 — — -1.0 -3.0 —
E111 204 216 — 278 — 449 314 — 271 —
∆111

12 -18.9 -21.6 — — — — — — -13.2 —
Epoly — — — — — — — — — 187i,216j

aSWMEAM and GGA-DFT results of this work.
bFinnis-Sinclair results of Wang et al.[19]
cGGA-DFT results of Vitos et al.[117]
dFinnis-Sinclair results of Derlet et al.[17]
eFinnis-Sinclair results of Ackland et al.[13]
fGGA-DFT and AMEAM results of Moitra et al.[118]
gBond-order potential results of Mrovec et al.[18]
h2NN-MEAM results of Lee et al.[15]
iEstimation by liquid-surface tension at 0 K, Tyson et al.[119]
jEstimation by atomization enthalpy at RT, Mezey et al.[120]

Table 5.4 shows energies and interplanar relaxations of low-index free surfaces.

Present calculations employ 48-atom supercells, replicated along the surface nor-

mal with an equally-sized vacuum region and periodic boundary conditions. All

results presented here predict the 〈011〉 surface to have the lowest energy, followed

by 〈111〉. Finnis-Sinclair potentials[13, 19] tend to underestimate the surface energy

with respect to GGA-DFT. The present SWMEAM potential compares favorably

with present ab-initio results and those of Vitos et al.[117] but underestimates the

inter-planar relaxation of the high-energy 〈100〉 surface by 50%. The origin of the

discrepancy between GGA-DFT results of Moitra et al. and the others is unclear.

Figure 5.7 presents the unrelaxed ideal shear stresses and energy barriers for pres-

sures up to 100 GPa. Ideal shear defines the upper limit of stress required to deform a

perfect crystal and is fundamental to our current understanding of the strength of ma-
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terials. Calculations are performed following the methodology of Paxton et al.[121],

which uses a bcc primitive cell. SWMEAM accurately reproduces the GGA-DFT

results for all pressures, with small discrepancies in shear stress around the extrema.

Figure 5.7: Ideal shear energy (top) and stress (bottom) for a continuous deformation
of a one-atom bcc unit cell corresponding to (112)[1̄1̄1] twinning system as described
by Paxton et al.[121]. SWMEAM Accurately reproduces the energy barrier and shear
stress of this deformation for pressures up to 100 GPa. Small discrepancies in shear
stress are found at the inflection points of the energy barrier, which correspond to
the two extrema of shear stress at x = 0.25 and x = 0.75.
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5.3 Transferability of the fitted potential

Transferability of the fitted potential is demonstrated by application to screw dis-

location core structure, deformation twinning in a bicrystal nanorod, and the high-

pressure bcc-to-fcc phase transformation.

5.3.1 Dislocation core and deformation twinning

Core structure of the 1
2
〈111〉 screw dislocation is determined using a cell with lattice

directions [12̄1], [1̄01], [111] and periodic boundary conditions along the dislocation

line. The first two lattice vectors are repeated to form a large cell containing 92,277

atoms which are displaced according to the appropriate elastic strain field. The core

structure is then determined by relaxing a central region containing 54,396 atoms

while the remaining atoms are fixed, ensuring that the correct boundary conditions

are satisfied by the long-range anisotropic solution. This methodology is further

explained in this group’s previous work on Nb[86] and Mo[88].

Figure 5.8 shows a non-degenerate symmetric core structure predicted by SWMEAM,

presented as a differential displacement map[46], is in agreement with results from an

existing bond-order potential[18] and DFT-GGA[122] calculation for tungsten. Exist-

ing F-S potentials predict an asymmetric core[123, 47]. Our potential is also consistent

with the criterion of Duesbery and Vitek[124], which is based on F-S calculations and

states that the 1
2
〈111〉 screw dislocation in bcc metals will have a symmetric core

structure if γ{110}(b/3) > 2γ{110}(b/6), where γ{110} is the relaxed {110} γ-surface and

b = a
√

3/2 is the burgers vector magnitude. Relaxed values taken from Figure 5.6

for SWMEAM are γ{110}(b/3) = 100 meV/Å2 and γ{110}(b/6) = 39 meV/Å2.
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Figure 5.8: Differential displacement map of the 1
2
〈111〉 screw dislocation. SWMEAM

predicts a non-degenerate symmetric core structure consistent with previous bond-
order[18] and GGA-DFT[122] calculations, whereas existing F-S potentials for tung-
sten predict a degenerate core[47].

While dislocation slip is fundamental to plastic deformation of bulk transition

metals, twinning has been found to dominate deformation in nanocrystalline Mo, Ta

and Fe[125]. A recent study[5] observed deformation twinning and detwinning during

uniaxial loading and unloading of a bicrystal nanorod. The Finnis-Sinclair potential

of Ackland and Thetford[13] was used to model this twinning and detwinning in

good agreement with experiment. We simulate this deformation as a challenge for

our fitted SWMEAM potential and to demonstrate transferability to non-equilibrium

conditions and consistency with existing models.

Figure 5.9 displays cross-sections of a bicrystal tungsten nanorod under uniaxial
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stress at 300 K. The nanorod is 128 Å in diameter and 510 Å in length, with periodic

boundary conditions parallel to the rod axis. A compressive strain of 10 % is applied

from the top of the rod over 20 ps while atomic positions are updated using the

Velocity Verlet[126] integrator and canonical ensemble with 1 fs timestep. The strain

is then unloaded over an additional 20 ps. Multiple {112}〈111〉 deformation twins

can be seen in Figure 5.9(a) through (c) to nucleate at the grain boundary and grow

with increasing stress. At full loading, strain is accommodated primarily by a single

large deformation twin extending from the grain boundary to the rod surface. During

unloading the accumulated strain is released by detwinning as can be seen in panels

(d) through (f). This deformation behavior is nearly identical to the results of Wang

et al.[5], indicating the transferability of the fitted SWMEAM potential to modelling

tungsten nanostructures and consistency with the successes of previously published

potentials[13, 5]. Given that the F-S potential of Ackland and Thetford predicts

an asymmetric core structure but accurately describes nanorod deformation[5], our

current SWMEAM potential is well suited to study the interplay of deformation

twinning and dislocation-induced plasticity in tungsten.
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Figure 5.9: Deformation twinning and detwinning in a tungsten bicrystal nanowire
under axial compression at room temperature. Compare to work of Wang et al.[5].
Structure identification was performed using adaptive common neighbor analysis as
implemented in ovito[43, 44]. Atoms are color-coded by structure: light (bcc) and
dark (none). (a,b,c) Multiple deformation twins of the {112}〈111〉 type grow and
merge as the rod is compressed by 10%. (d,e,f) Detwinning occurs as the load is
released, recovering the compressive strain. Different shades of gray appear in the
bulk because of atomic-level shading in ovito.

5.3.2 Stabilization of fcc tungsten

Finally, the stabilization of fcc tungsten at high pressure is investigated. Theoretical

studies have predicted that bcc tungsten becomes thermodynamically unstable with

respect to close-packed fcc and hcp phases at extreme pressures[57] and under the

conditions of strong electronic excitation during laser irradiation[58], for which a

Te-dependent interatomic potential was developed to study the transition[20]. To

the authors’ knowledge, fcc tungsten has only been observed in thin films formed by

sputter deposition between 200 and 400 ◦C on glass, mica and rock-salt substrates[10].

The predicted zero-pressure lattice constants of fcc tungsten for SWMEAM and DFT

are 4.049 Å and 4.044 Å, respectively, while Chopra et al.[10] found an fcc lattice
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constant of 4.13 Å in the aforementioned tungsten films. This section considers the

stabilization of fcc at high pressures, some accessible via diamond-anvil experiments.

Figure 5.10: SWMEAM (solid) Phonon dispersions at various pressures compared
with LDA-DFT (dashed) work of Einarsdotter et al.[57] (a) bcc: SWMEAM is con-
sistent DFT even at the extreme pressure of 1200 GPa, but underestimates softening
rate of the L-2

3
[111] (ω) phonon and predicts an anomalous softening of the T-1

2
[110]

phonon with increasing pressure. (b) fcc: with the exception of the soft T-[ξξ0] and T-
[ξξξ] modes, SWMEAM dispersion at zero pressure diverges considerably from that of
DFT. SWMEAM also underestimates the rate of stabilization of the soft modes with
respect to DFT work. However at extreme pressures where fcc is thermodynamically
stable, SWMEAM dispersion agrees closely with that of DFT. Displayed pressures
are computed with SWMEAM. These dispersions were calculated using the small
displacement method as implemented in the Atomic Simulation Environment[42]. As
usual for phonons, negative values represent imaginary frequencies.

Figure 5.10(a) compares SWMEAM phonon dispersions for bcc W at pressures

of 30 to 1200 GPa with LDA-DFT results of Einarsdotter et al.[57]. SWMEAM

force constants are computed using the small-displacement method, implemented in

the Atomic Simulation Environment[42], on a 10×10×10 supercell with δ = a(P )/100

where a(P ) is the cubic lattice constant at pressure P . LDA-DFT results employed the

density-functional linear response method, norm-conserving pseudopotentials, and

5s5p5d6s6p valence. As seen in Figure 5.4, SWMEAM predicts the L-2
3
[111] (ω)

phonon to have lower frequency compared with DFT and experiment. This mode
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softens with increasing pressure, albeit at a lower rate than predicted by LDA cal-

culations. Otherwise SWMEAM accurately captures the other important features

of bcc dispersion up to 1200 GPa. Low-pressure results (30-60 GPa) also compare

favorably with the AMEAM results of Zhang and Chen[127].

Figure 5.10(b) compares the fcc phonon dispersion predicted by SWMEAM and

LDA-DFT at pressures from 0 to 1200 GPa. At low pressure, where fcc is a highly

unfavorable structure, SWMEAM does not compare well to ab initio results but cor-

rectly predicts unstable soft modes in the T[ξξ0] and T[ξξξ] branches. However,

the stabilization of these modes with increasing pressure is non-monatonic and par-

ticularly anomalous on the T[ξξξ] branch at intermediate pressures. By 1200 GPa,

MEAM predicts fcc tungsten to be dynamically stable and shows excellent agreement

with the LDA-DFT dispersion.

Figure 5.11(a) shows the elasic moduli C44 and C′ between 400 and 500 GPa, where

all Cij are positive definite. It can be seen that C′ = 1
2

(C11 − C12) is negative for

pressures below 455 GPa, reflecting the slope of the T[11̄0] [ξξ0] branch arbitrarily close

to the Γ-point. Figure 5.11(b) shows this mode for pressures around 540 GPa, where

long-wavelength modes are stable but the ξ = 0.40 mode remains unstable. According

to SWMEAM, this mode is the last unstable phonon in any of the considered high-

symmetry lines in the Brillouin zone and stabilizes at 543 GPa. However Figure

5.11(c), which displays the enthalpy difference ∆H = Hfcc − Hbcc versus pressure,

shows that the bcc phase remains energetically favorable until about 762 GPa. The

inset in figure 5.11(c) shows the isobaric tetragonal Bain path at the determined

pressure, displaying a barrier for the bcc→fcc transition of 140 meV/atom. This

barrier persists even above 2 TPa, but accuracy of the fitted potential in this pressure

range has not been verified and any further investigation should be carefully checked

with first-principles methods.
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Figure 5.11: Stability of fcc tungsten at 0 K. (a) shows the elastic constants C44 and
C′ as functions of pressure, demonstrating the elastic stability of fcc tungsten for pres-
sures above 455 GPa. (b) depicts the stabilization of the fcc-T[11̄0] [ξξ0] phonon branch
with pressure. SWMEAM predicts that fcc becomes dynamically stable around 543
GPa with the ξ = 0.4 mode being the last to stabilize. (c) depicts the enthalpy
difference Hfcc(P )−Hbcc(P ) between fcc and bcc as a function of pressure, revealing
that despite being dynamically stable, fcc tungsten is not energetically favorable un-
til pressures above 762.5 GPa. (inset) The tetragonal Bain path at the determined
transition pressure exhibits an energy barrier of 140 meV/atom, indicating that bcc
will not spontaneously transform to fcc with the fitted potential.
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To summarize, present SWMEAM results are consistent with LDA-DFT predic-

tions of Einarsdotter et al.[57] in that for fcc C44 is stable at relatively low pressures,

C ′ stabilizes before fcc is thermodynamically favorable, the last phonon mode to

become real is the T[11̄0][ξξ0] mode at ξ ≈ 0.4, and that bcc remains energetically

favorable until about 726 GPa. Even above this pressure there exists an energy bar-

rier on the tetragonal bain path from bcc to fcc, again consistent with Einarsdotter

et al., which persists at all pressures considered here. The fitted potential should

be suitable for further study of high-pressure fcc tungsten and its possible transition

from the bcc phase, but predictions in the multi-TPa range should be checked with

first-principles.

5.4 Summary

We have developed and applied a novel semi-empirical interatomic potential for tung-

sten, based on the MEAM and SW formalisms, parameterized using bias-free quintic

splines and force-matched to a large database of highly-converged DFT data using

an evolutionary global optimization scheme. We have demonstrated accuracy of the

fit by reproducing phonon frequencies, compression and thermal-expansion curves,

formation energies of unfavorable crystal structures, self-interstitial defects, free sur-

faces, vacancies, stacking faults and ideal shear at multiple pressures. Transferability

of the fitted potential has been demonstrated by description of the high-pressure bcc

to fcc phase transformation, dislocation core structure and deformation twinning and

detwinning of a tungsten nanorod. Given the accurate description of both deforma-

tion twinning and dislocation structure this potential is more suitable than previous

models for studying their interplay. Accuracy of elastic and vibrational properties

at high pressures will enable quality shock simulations, and the combination of ac-
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curate free-surfaces and non-equilibrium crystal structures should produce reliable

descriptions of tungsten nanostructures.
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Chapter 6:

Cluster Functional for

Titanium-Niobium

This chapter presents the foremost achievement of the present work, an empirical

potential force-matched to a large database of ab initio forces, stresses and ener-

gies with an optimization scheme combining the Powell conjugate-direction[95] and

genetic algorithms. Our model is an empirical extension of the modified embedded-

atom method (MEAM)[97, 78, 85, 14, 128] for alloys, referred to as “GMEAM” in

Chapter 3.3, with functions parameterized by cubic splines. Section 6.1 describes

the formulation of the model, the density functional theory (DFT) database, and the

optimization scheme. Section 5.2 contains calculations of structural, elastic and ther-

mal properties to demonstrate accuracy of the fit and consistency with existing data.

Section 6.3 examines behavior of the fitted potential for martensitic transitions in

pure titanium and Ti-rich alloys. Section 6.4 contains differential displacement maps

of screw dislocation cores in hcp Ti and bcc Nb and examines the effect of alloying

therein. Conclusions are given in Section 6.5.
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6.1 DFT Database and fitted parameters

Highly converged DFT calculations performed with vasp [66, 67, 68, 69] using a

projector-augmented planewave basis [129] and Perdew-Burke-Erzenhof (PAW-PBE)

[130, 131] generalized-gradient exchange correlation approximation (GGA) comprise

a database of forces, stresses and energies for fitting via the force-matching method

of Ercolessi and Adams [1]. Valence configurations are 3p4s3d and 4p5s4d for Ti

and Nb pseudopotentials, respectively. Convergence with respect to planewave basis

size, number of k-points for Brillouin zone integration, and 1st order Methfessel-

Paxton [71] smearing parameter is achieved to within 1 meV/atom for all structures

in the fitting database. Planewave cutoffs and smearing parameters are 550 eV and

0.1 eV, respectively, for all phases. Table 6.1 contains the number of atoms and

k-point meshes used for Ti, Ti3Nb, TiNb and TiNb3 structures. DFT results for

pure niobium structures in the database were performed by Fellinger et al.[86] with

additional details available in Fellinger [132]. All electronic self-consistency loops are

converged to 10−6. Ionic relaxations are converged to 10−5.

The fitting database contains 411 configurations with a total of 9,079 unique

force components, stress components and energies to be fit. The potential contains

200 fitted parameters. Optimization is done through the hybrid genetic algorithm

described in Chapter 4

The remainder of this section describes the contents of the DFT database. The

first paragraph that follows lists structures for which points on the energy-volume

curve at 50%, 97.5%, 100%, 102.5% and 120% equilibrium are included in the fitting

database. The second paragraph lists the structures for which elastic constants,

calculated following the method of Trinkle [40], are included. The third paragraph,

given the importance of martensitic transitions of this system, describes structures

129



Table 6.1: Structures, cell parameters and k-point meshes used in DFT calculations.
Titanium atoms are shown in grey and niobium atoms in green.

Structure Atoms a [Å] b/a c/a k-point mesh
– Ti –

hcp 2 2.939 1 1.582 17× 17× 13

bcc 1 3.254 1 1 23× 23× 23

ω 3 4.580 1 0.618 11× 11× 18

A15 8 5.182 1 1 11× 11× 11

fcc 1 4.110 1 1 19× 19× 19

– Ti3Nb –

D03 16 6.522 1 1 11× 11× 11

D019 8 5.845 1 0.815 9× 9× 13

L60 4 3.276 1.404 1.404 20× 15× 15

G1 16 6.529 1 1 11× 11× 11

A15 8 5.193 1 1 11× 11× 11

SQS 16 7.354 1 2.831 11× 11× 9

α′′ 4 3.330 1.434 1.324 20× 15× 16

α′ 16 5.976 1 1.582 11× 13× 9

ω 12 9.313 0.866 0.300 8× 8× 27

– TiNb –

B2 2 3.266 1 1 13× 13× 13

A3 2 2.917 1 1 13× 13× 9

Pmmm 4 3.276 1.414 1.414 13× 9× 9

– TiNb3 –

A15 8 5.254 1 1 11× 11× 11

SQS 16 7.363 1 2.828 11× 11× 9
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along the transition pathways. The fourth paragraph lists the various point and

planar defect structures to which the potential is fit. The last two paragraphs in this

subsection describe ab initio MD snapshots at finite temperature, each of which is run

with a 1 fs timestep, and miscellaneous configurations which were added to correct

for spurious results obtained with previous iterations of the potential. More detail on

the iterative process of fitting, testing, and database refinement is provided Section

6.1.

The fitting database contains energy-volume relations for multiple phases at each

considered stoichiometry, including those that are dynamically or elastically unstable,

in order to broadly sample the configuration space and train the potential to non-

equilibrium configurations. For pure titanium the database includes the hcp α, bcc

β, hexagonal ω, fcc and A15 phases while for niobium it includes bcc, hcp, ω-Ti, A15

(also known as β-W) and β-Ta phases. Since the solid-solution nature of alloys is

impractical to account for within DFT, representative supercells for each phase must

be used. Structure candidates for Ti3Nb hexagonal α′, orthorhombic α′′, bcc (β) “G1”

and hexagonal ω phases are taken from Lazar et al. [133], who performed a thorough

analysis of their stability. Additionally, a 16-atom bcc special quasi-random structure

(SQS) [134], the bcc D03 and L60 structures, the hcp D019 and the A15 structure are

included for this stoichiometry. For TiNb, a [110]-layered bcc supercell (where [110]

alternate between Ti and Nb, space group Pmmm), bcc B2 and hcp A3 structures

are included. Finally a bcc SQS and an A15 TiNb3 phase, which is predicted by DFT

to be elastically and dynamically stable, are included in the database.

The fitting database contains elastic constants for hcp, bcc and ω phases of tita-

nium; D03, G1, ω and α′′ phases of Ti3Nb; the B2 phase of TiNb and bcc niobium;

each at ±0.8 and ±0.4% strains at zero pressure.

Three evenly-spaced points on the ω ↔ β pathway (via splitting of the honeycomb
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layers into alternate 〈111〉 bcc planes) are included for pure titanium. For Ti3Nb,

where the fully transformed ω phase corresponds to G1-β as described in Lazar et al.

[133], three additional points on the energetic barrier identified by Lai et al. [135] are

included. A mesh of nine evenly-spaced points on the Burgers [59] energy surface of

the α↔ β transition in pure Ti and α′′ ↔ β-L60 in Ti3Nb are included.

For defect structures, two points on the easy and hard prismatic stacking faults in

hcp-Ti are included. Three points on {112}〈111〉 and one point on {110}〈111〉 faults

of bcc-Nb, as well as an unrelaxed vacancy and (100), (110) and (111) free surfaces

are included.

Finite temperature structures are included in the database to ensure accuracy

in dynamics simulations, including: a 127-atom ab-initio MD snapshot of bcc-Ti

containing a vacancy at 1300 K; 432-atom snapshots of Ti3Nb at (bcc) 300 K, 1000

K and (liquid) 3000 K; a 256-atom snapshot of α′′ at 300 K; and snapshots of bcc-Nb

at 1200 K, 2200 K and (liquid) 5000 K.

Miscellaneous structures added through the course of fitting and testing for the

purpose of improving specific behaviors include α′′ Ti3Nb with b and c scaled by 0.95

and 1.05, lattice constants of bcc-Nb at 50 and 100 GPa, and large-strain (20% and

40%) configurations for C44 in niobium. Also included are peaks of the ideal shear

curve of bcc Nb at 0 and 100 GPa. Last, configurations of bcc-Ti with a single atom

displaced by ±0.003 Å are included to improve accuracy of force constants in this

system.

Fitting is performed using the hybrid genetic algorithm described in Chapter

4. Plots of the final splines are shown in Figure 6.1 and numerical values of the

parameters are given in Table 6.1.
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Figure 6.1: Plots of the sixteen functions of the fitted potential. Points are spline
knots and lines are cubic spline interpolants. Splines are clamped at the endpoints
according to the derivatives listed in Table 6.1.
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[Å
]

T
i-

T
i

0
2.

01
7

6.
0

12
T

i-
N

b
1

2.
04

9
6.

0
12

N
b

-N
b

2
2.

07
3

6.
0

12

ρ
r

[Å
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Figure 6.2: Energy versus volume curves for (a) Ti, (b) β Ti3Nb, (c) α and ω Ti3Nb,
and (d) Nb. GMEAM values are shown as solid curves, while DFT values are pre-
sented as points. Zero energy is defined for (a) as hcp Ti, for (b) and (c) as G1 Ti3Nb,
and for (d) as bcc Nb. Values are given relative to these zeros for the two methods
presented. For the Ti3Nb stoichiometry, fully relaxed solid-solution (S.S.) curves are
shown for GMEAM.
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6.2 Accuracy of the fitted potential

We demonstrate the accuracy and transferability of the fitted GMEAM potential

through the energetics and elastic moduli, crystallographic defects and thermody-

namic properties for phases throughout the Ti-Nb phase diagram. All molecular dy-

namics calculated presented here were performed with the Large-scale Atomic/Molecular

Massively Parallel Simulator (lammps) [100] version dated 31 March, 2017. If at any

step during an MD run the density seen by an atom exceeds its embedding function

domain, the embedding energy is linearly extrapolated from the nearest end point.

6.2.1 Structural, Elastic and Thermal Properties

In this section structural, thermal and elastic properties of various Ti-Nb phases are

examined with the fitted GMEAM potential.

Figure 6.2 shows energy-volume curves volumetric scaling with fixed lattice ratios,

where GMEAM energies are shown as curves and DFT energies are points. Figure

6.2(a) contains energies of pure titanium structures, where GMEAM shows excellent

agreement with the ab initio data, including the nearly degenerate spacing of hcp

(α) and ω-Ti. Figures 6.2(b) and (c) contain structures for bcc (β) and non-bcc

Ti3Nb, respectively. Common bcc intermetallic structures such as D03 and L60 are

considered, as well as the G1 structure proposed by Lazar et al., which contains a

chain of niobium atoms along the body diagonal. A fully-relaxed special quasi-random

structure (SQS) for the 3:1 ratio in bcc [134] has the lowest energy of all bcc structures,

and is slightly lower even than the α′′ structure proposed by Sun et al. [136]. Solid

solution predictions by GMEAM are presented as dashed curves. GMEAM agrees

with DFT predictions of bcc structures with the notable exception of L60, which can

be transformed into α′′ by the Burgers [59] mechanism as described in Section 6.3.
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In part (c), GMEAM shows good agreement with DFT, slightly underestimating the

energy of α′ and the difference between α′′ and ω. Lastly, GMEAM again shows good

agreement with DFT for pure niobium structures in part (d), except for the energetic

ordering of high-lying hcp and fcc Nb.

Figure 6.3: Pressure-volume relations for hcp-Ti and bcc-Nb. DFT shows good
agreement with room-temperature experimental data [101] obtained by shock mea-
surements, but GMEAM under-estimates hcp-Ti pressure for compression below
V/V0 = 0.7 and over-estimates pressure at higher compression.

Figure 6.3 shows pressure-volume curves for hcp Ti (top) and bcc Nb (bottom)

as computed with GMEAM and DFT at 0 K, compared with experimental shock
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Table 6.3: Linear thermal expansion coefficients (TECs), in units of 10−6 K−1, cal-
culated with GMEAM and compared with experiment. GMEAM overestimates the
TEC at each considered concentration, but shows a decrease with niobium content
consistent with experiment.

at. % Nb GMEAM Expt.
0 11.7 9.50a, 9.90b

2.64 10.9 9.35a

11.41 10.8 9.37a

100 7.87 7.0c

aExperimental data for Ti and Ti-Nb from Han et al. [137].
bExperimental data for Ti from Zinelis et al. [138].
cExperimental data for Nb from Argent et al. [139].

data taken from Kinslow [101] at room temperature. GMEAM tracks DFT and

experiment for bcc Nb, but underestimates hcp-Ti pressure by about 10 GPa at

80% equilibrium volume. The origin of this discrepancy is unclear since DFT agrees

well with experiment. Given this anomaly, one must take care when applying the

fitted potential to high-pressure phenomena in titanium-rich systems. Below 10 GPa,

however, the difference between GMEAM and DFT is negligible.

Table 6.3 displays linear thermal expansion coefficients (TECs) predicted by the

fitted GMEAM potential and compared with limited experimental data for Ti, Nb,

and two alloy stoichiometries. Calculation of the TECs is done using 8,788-atom

NPT ensemble simulations with a timestep of 1 fs, where the pressure is kept at

zero and the temperature ramped up, starting at RT, over one nanosecond. Every

100 ps, the average temperature and volume over the last 10 ps are computed. The

TEC is determined by fitting these to a linear function in the temperature range

considered in experiment. GMEAM results are consistently higher than experimental

fits, but the difference shrinks as niobium content increases. Notably, experimental

data show a slight increase in TEC between 2.64 and 11.41 at.% Nb, but GMEAM

values monotonically decrease across the range of niobium content.
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Table 6.4 contains elastic constants of Ti, Nb, and Ti3Nb computed in the present

work and compared with other ab initio and EAM results. Moduli in the present

work are calculated using the methodology described by Trinkle [40] using strains

of ±0.2%, ±0.4%, ±0.6%, ±0.8%. GMEAM matches present DFT calculations to

within 20 GPa for most phases, the most notable exceptions being a much softer C11

and C33 for ω-Ti3Nb and a negative C ′ = (C11−C12)/2 prediced for the D03 structure.

Since the elastic constants of pure ω-Ti are generally softer than those computed for

the alloy, it is possible the discrepancy for ω-Ti3Nb is due to the lack of any strained

ω-Ti niobium configurations in the fitting database. Given the solid-solution nature

of alloys, however, elastic constants of intermetallic structures do not necessarily give

reliable predictions of bulk elasticity.

Figure 6.4 shows elastic constants of solid-solution bcc Ti-Nb as a function of

niobium concentration at 0 K, compared with experiment and previous calculations.

Solid lines are GMEAM predictions from a 31,250-atom solid solution. To prevent

martensite formation and breaking of cubic symmetry, internal relaxations are not

allowed. GMEAM results are compared with DFT calculations (open symbols) and

experimental data for Ti-Nb alloys (filled symbols) as well as gum metals (half-filled

symbols). GMEAM predicts elastic instability (C12 > C11) for xNb < 10% because

the bcc phase is only stable at high temperatures (experimental results for pure Ti

from Ledbetter et al. are at 1000 oC). The majority of experimental elasticity data

for Ti-Nb alloys is between 20 and 40 at.% niobium, where GMEAM predictions are

accurate. Existing DFT data obtained from various intermetallic structures is also

accurate compared to experiment. DFT calculations by Nikonov et al. [140] using the

effective muffin-tin orbital (EMTO) basis within the coherent potential approximation

(CPA) tends to over-estimate C44 relative to experiment, particularly in the Ti-rich

region.
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Figure 6.4: Elastic constants (in GPa) of bcc Ti-x at.%Nb as a function of niobium
concentration x. Solid lines are from a 31,250-atom solid solution as calculated with
the fitted GMEAM potential using a maximum strain of 0.5%. Open symbols are from
DFT calculations of the present work and others, while filled symbols are experimental
data. GMEAM shows good agreement with experiment across the range of niobium
concentration, but in general overestimates C12 compared to previous ab initio work
(open symbols). This gives a smaller value for C ′ = (C11 − C12)/2, meaning the
potential is more elastically anisotropic as measured by the anisotropy ratio A =
C44/C

′.
aGMEAM and GGA-DFT results of this work.
bGGA-DFT results of Karre et al. [133].
cEMTO-CPA results of Nikonov et al. [136].
dTwo gum metal results of Talling et al. [141].
eExperimental results of Ledbetter et al. [142].
fExperimental results of Hermann et al. [143].
gExperimental results of Reid et al. [144].
hExperimental results of Carroll [145].
iExperimental results of Jeong et al. [146].
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Table 6.4: Single-crystal elastic constants of Ti3Nb phases by GMEAM and DFT
compared with data from the literature.

Phase Cij GMEAMa DFTa DFTb DFTc EAMd

hcp Ti

C11 162 172 189
C12 61 84 74
C13 68 74 68
C33 197 190 192
C44 62 44 50

β-G1
C11 147 142 149 176
C12 121 112 111 153
C44 34 34 37 66

β-D03

C11 115 122 131 117 106
C12 122 121 119 105 59
C44 20 19 -8 20 15

ω-G1

C11 169 204 226 162 226
C12 82 102 117 125 -97
C13 72 67 81 85 28
C33 173 250 276 212 212
C44 30 30 39 19 39
C66 43 51 55 22 52

α′′

C11 122 146 148 130 105
C12 103 92 93 91 142
C13 103 124 124 127 115
C22 183 182 171 148 212
C23 78 84 80 69 140
C33 200 176 175 136 149
C44 53 51 65 28 67
C55 49 34 45 23 48
C66 53 69 32 40 62

bcc Nb
C11 235 251 243
C12 156 133 130
C44 17 22 28

aGMEAM and GGA-DFT results of this work.
bGGA-DFT results of Lazar et al. [133].
cGGA-DFT results of Sun et al. [136].
dResults from EAM Nb-Ti-Al potential of Farkas et al. [147].
(calculations by present authors)
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Table 6.5: Vacanacy (Vac.) and self-interstitial formation energies in bcc Nb and hcp
Ti. Interstitial configurations for bcc Nb are octahedral (O), tetrahedral (T), crowdion
(C), and split (or “dumbbell”) structures indicated by angle brackets. Geometry of
these defects can be found in Fellinger et al. [86]. In addition to O, T and C, basal
octahedral (BO), basal tetrahedral (BT), basal crowdion (BC), basal split (BS) and
c-axis split (CS) configurations are presented for hcp Ti. These geometries can be
found in Raji et al. [148]. Structures which relax to another interstitial configuration
are shown by table entries containing the relaxed structure abbreviation.

GMEAMa DFTa EAMb DFTc,d MEAMe,f

— bcc Nb —
Vac. 2.74 2.72 2.77 2.67 2.91
O 〈001〉 4.89 2.17 5.08 5.27
T 〈011〉 4.56 〈011〉 4.90 5.38
C 4.73 3.99 〈111〉 4.35 4.17
〈001〉 5.80 4.76 2.31 5.02 5.27
〈011〉 4.88 4.31 2.21 4.65 5.10
〈111〉 C 3.95 2.30 4.34 4.16

— hcp Ti —
Vac. 2.26 1.38 1.53 1.970 2.26
O BO 1.57 C 2.13 2.00
T CS CS BS CS CS
C BO 2.16 2.24 2.53 2.30
BO 2.41 1.51 BS 2.25 2.02
BT BO 3.01 BS BO 3.69
BC BO BO 2.19 BO BO
BS 2.85 1.87 2.19 2.45 2.22
CS 2.88 1.91 2.78 2.48 2.21
aGMEAM and GGA-DFT results of this work.
bResults from EAM Nb-Ti-Al potential of Farkas et al. [147].
(calculations by present authors)
cGGA-DFT results for bcc Nb of Cerdeira et al. [149].
dGGA-DFT results for hcp Ti of Raji et al. [148].
eNb MEAM potential of Fellinger [132].
fTi MEAM potential of Hennig et al. [55].
(calculations by present authors)

6.2.2 Planar and Point Defects

In this section, behavior of the fitted GMEAM potential for point defects and stacking

faults in hcp-Ti and bcc-Nb is investigated.
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Table 6.5 contains vacancy and interstitial point defect formation energies for bcc

Nb and hcp Ti as calculated in the present work and compared with an existing

EAM potential and DFT work from the literature. Present DFT calculations employ

250(±1)-atom supercells while MD calculations use 1,024(±1) atoms. Only vacancy

structures are included in the fitting database of the present potential.

Vacancy formation energies of bcc Nb are very consistent between the methods

considered here, but the EAM potential of Farkas et al. tends to underestimate

all interstitial formation energies. We also found that the crowdion configuration

collapses with this potential if neighboring atoms are not artificially shifted away

from the interstitial atom before relaxation. The present GMEAM prediction that

octahedral interstitials relax to 〈001〉 dumbbells is consistent with the degenerate

energies predicted by Fellinger [132]. GMEAM predicts the bcc crowdion to be the

energetically favorable contrary to the DFT results, which find 〈111〉 dumbbells to

have the lowest energy. However, the ab initio energies of these two defects differ by

40 meV in the present work and only 10 meV according to Cerdeira et al. [149]. This

is unsurprising, given their structural similarity. Indeed, the GMEAM prediction of

crowdion stability is compatible with the known high mobility of interstitials in non-

ferromagnetic bcc metals,[150, 151] recently found to result from migration of 〈111〉

defects in tungsten [115].

The fitted GMEAM potential tends to overestimate interstitial formation ener-

gies in hcp Ti compared to the present DFT calculations, but correctly predicts the

BO configuration to have the lowest energy. T and BC configurations are unstable

with respect to CS and BO, respectively, in both methods. We find that the EAM

potential of Farkas relaxes many of the interstitials to the BS configuration, which is

energetically degenerate with BC despite being structurally distinct after relaxation.

We find the present GMEAM potential to be consistent with that of Hennig et al.
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[55] for the vacancy formation energy and the instability of T with respect to CS.

We note that the formation energies calculated in the present work using the MEAM

potential of Hennig et al. differ from their published results by as much as 0.64 eV.

We suspect this is due to a difference in defect concentrations; their published values

correspond to a concentration of about 1% while the present values are for roughly

0.1%.

Figure 6.5 shows low-index generalized stacking-fault energy (GSFE) curves for

(a) hcp-Ti and (b) bcc-Nb. Unrelaxed DFT values are shown as points while GMEAM

results are shown as solid lines (unrelaxed) and dashed lines (relaxed). For hcp-Ti

(a), the 〈112̄0〉{0001} prismatic stacking fault relevant to partial dislocation formation

is shown in easy (red) and hard (black) configurations. GMEAM predicts a stable

partial dislocation as a result of the local minimum at 0.5. Part (b) shows {110}〈111〉

(red) and {112}〈111〉 (black) GSFE curves for bcc Nb. GMEAM predicts a much

broader curve for the {112} fault than DFT, and reduces energy by about 5 meV/Å2

upon relaxation. For the {110} fault, GMEAM tracks DFT quite well and shows a

similar reduction in energy of about 5 meV/Å2 upon relaxation.

In summary, the fitted GMEAM potential shows good agreement with existing

data on elastic and defect structures near zero pressure. The pressure-volume relation

of hcp-Ti (Fig. 6.3) does not track experiment as well as DFT, but the difference below

10 GPa is negligible. Linear thermal expansion coefficients (Table 6.3) are generally

over-estimated but decrease with niobium content in agreement with experiment.
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Figure 6.5: Low-index stacking faults for (a) hcp Ti and (b) bcc Nb as predicted
by GMEAM (solid curves) and the present DFT (points) calculations. Faults re-
laxed with GMEAM are shown as dashed curves. Relaxation of the easy prismatic
({011̄0}〈112̄0〉) fault in hcp titanium reveals a local minimum indicating the forma-
tion of partial dislocations consistent with Ghazisaiedi and Trinkle, and Tarrat et al.
[152, 153]. No metastable fault structures are found for niobium.
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6.3 Martensitic Transformations

Much of the interest in Ti-Nb alloys near the 3:1 stoichiometry comes from their multi-

phase nature and martensitic transformations. This section examines the energetics

of these transitions for intermetallic structures and solid solutions. In the end, an

NPT simulation of the shape-memory effect in Ti-25 at.%Nb is performed with the

fitted potential.

Figure 6.6: Transition energy barriers for the ω to β transition in G1-Ti3Nb and
(inset) pure Ti via the planar collapse mechanism for GMEAM and DFT. The atomic
motion during this transition corresponds to a longitudinal 2/3[111] phonon in the
bcc lattice as shown schematically in the top left. The c/a ratio is mapped with ξ
from the optimal value for ω to the ideal value in β. The overall lattice constant a
is an average of the appropriate values in the endpoint phases. GMEAM accurately
describes the transition in both systems, including the 5 meV/atom DFT barrier from
G1-β to ω first identified by Lai et al. [135].
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Figure 6.6 shows the ω ↔ β transition pathway for the G1 structure in Ti3Nb

and (inset) pure titanium. The reaction coordinate ξ represents a splitting of the

sublattices of ω honeycomb planes into bcc 〈111〉 planes. The axial ratio c/a is

mapped with ξ from the optimal value in ω to the required value in β. The overall

lattice constant a is an average of the corresponding values in the endpoint phases.

While GMEAM overestimates the energetic spacing between ω and β-G1 by 1 eV

compared to DFT, a barrier height of about 5 meV/atom from β to ω is predicted by

both methods. This is consistent with the work of Lai et al. [135], who investigated

the energetics of this transformation and the presence of ω at β twin boundaries and

β − α′′ interfaces with DFT. The fitted potential also agrees well with present DFT

calculations for pure titanium, where the energetic spacing between β and ω is an

order of magnitude higher than in the Ti3Nb system. Since the G1 supercell is but

one of many possible chemical decorations of the ω-Ti lattice, the effect of alloying is

considered next.
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Figure 6.7: Evolution of the ω ↔ β transition pathway at 0 K with niobium in solid
solution. A six-atom orthorhombic ω cell is repeated 10×10×5 (3,000 atoms in total)
and atomic decoration is randmly assigned to match the niobium concentration shown
on the right-hand side of the curves. The horizontal axis represents the displacement
as the two 2D-sublattices of the bipartite honeycomb layers are shifted up and down
along [0001]ω, as shown by upward-facing and down-ward facing triangles respectively,
until they become different 〈111〉β planes. At each point the cell dimensions are
relaxed to zero pressure. The parameters of the lowest-energy structure for each
concentration are plotted in the inset. Curves are colored according to the equilibrium
structure, where black represents ω-Ti and red represents bcc. The lack of any local
minima indicates the potential will not form a trigonal ω phase at equilibrium in any
of the considered concentrations. The cell parameters remain relatively unchanged
due to the inherent structural compatibility of the β and ω phases.

Figure 6.7 shows the GMEAM ω ↔ β transition at 0 K for multiple niobium

concentrations in solid solution, labeled on the curves. The energy of ω is taken as

zero, and the right-hand side of the curve represents a complete transition to bcc.

This is accomplished by splitting the honeycomb layers of an orthorhombic ω supercell
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into 〈111〉β planes. At each step, the supercell lattice parameters are relaxed to zero-

pressure. The equivalent six-atom orthorhombic cell parameters (shown in bottom

left) for the lowest-energy structure are plotted in the inset, and curves in the main

figure are colored according to the equilibrium structure for that stoichiometry. The

fitted GMEAM potential does not display a transition barrier from β to ω at any

of the considered concentrations, unlike the G1 intermetallic transition shown in

Figure 6.6 and that computed by Lai et al. [135]. By 30 at.% Nb, the bcc phase is

energetically favorable at 0 K. Despite the shift in energy, lattice parameters remain

nearly constant due to the inherent structural compatibility between bcc and ω-Ti.

No stable configurations are found at partial transformations, indicating that the

trigonal ω phase will not exist in bulk at 0 K with the present GMEAM potential.

It is worth noting that solutes in beta titanium alloys have been observed to be

ejected from the isothermal ω phase into the β matrix upon aging [154, 155] but

not in quenced ω precipitates where the planar collapse is incomplete [154], so the

composition and structure of the ω phase depends heavily on thermal history. The

fitted potential should provide a useful tool for atomistic investigation of these effects.

Crystal structure of the α martensite in β-titanium alloys varies with β-stabilizer

content. A four-atom orthorhombic cell with space group Cmcm and Wyckoff po-

sitions (0, 0, 0), (1/2, 1/2, 0), (0, 1 − 2y, 1/2) and (1/2, 1/2 − 2y, 1/2) can be used to

describe β and all variants of the α martensite by changing y and the axial ratios.

More detail about this cell is provided in Lazar et al. [133]. The Burgers [59] mech-

anism describing the α ↔ β transition has two independent variables: one which

changes the parameter y and another which changes axial ratios. As such, one can

obtain potential energy surfaces for α ↔ β and α′′ ↔ β-L60 transitions via the

Burgers mechanism by tuning this four-atom unit cell.
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Figure 6.8: Potential energy surfaces for the α↔ β transition by the Burgers mecha-
nism as calculated with GMEAM (left) and DFT (right) for pure Ti (top) and Ti3Nb
(bottom). In all cases, ξ = η = 0 is the location of the bcc β phase (L60 structure
for Ti3Nb) while α or α′′ is located at ξ = η = 1. Calculations were performed on
a 50×50 grid for which η and ξ each vary from -0.125 to 1.125. The energy surfaces
are fitted to seventh-order polynomial functions for the purpose of drawing smooth
contours.

Figure 6.8 shows contour plots of energetic surfaces for the α ↔ β transition via

the Burgers mechanism. GMEAM calculations are shown in the left column, with

present DFT work in the right column. Plots on the top row are for pure titanium

and plots at the bottom represent a transition from a bcc L60 structure to the α′′

structure proposed by Sun et al. [136]. The bcc β structures are located at η = ξ = 0
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and the α and α′′ structures are located at η = ξ = 1. Energies are measured relative

to the minimum in each plot.

Shear (ξ) represents simultaneous elongation along [011]β and [01̄1]β, which maps

in a linear fashion both the b/a and c/a ratios of the orthorhombic cell from
√

2

to their optimal values in the martensite. Varying the axial ratios with the same

parameter is an approximation. EMTO-CPA results of Li et al. [156], who examine

the optimal relationship between b/a and c/a, indicate that the induced error of the

present assumption is on the order of 1 meV/atom for pure Ti. Their results also

suggest that the optimal relationship between c/a and b/a becomes more linear with

increased niobium content, so this error should decrease.

Shuffle (η) represents a shift of alternating (011)β planes in a [01̄1]β direction,

described by changing y from 1/4 in the bcc lattice (η = 0) to y = 1/6 (η = 1) in

the hcp lattice. In α′′, the value of y corresponding to η = 1 is taken from Sun et

al. to be y = 0.2, but present DFT calculations find an optimal value of y = 0.204.

Axial ratios corresponding to ξ = 1 are the optimal values in the present DFT work.

The overall lattice constant a is an average of the appropriate values of the β and

martensite lattices.

GMEAM and DFT are in good agreement for the burgers transition in pure tita-

nium, and are consistent with the LDA-DFT and EAM results of Masuda-Jindo et

al. [52].

GMEAM underestimates the difference in energy between β-L60 and α′′ as it

assigns L60 an energy about 15 meV/atom lower than DFT. Furthermore, GMEAM

predicts a α′′ phase with incomplete shuffle and shear compared to the DFT structure,

indicating a difference in lattice constants and parameter y. Fully relaxed DFT cell

parameters of α′′ are a = 3.33 Å, b = 4.77 Å, c = 4.41 Å and y = 0.204 while

GMEAM predicts a = 3.24 Å, b = 4.78 Å, c = 4.48 Å and y = 0.208. Despite
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this fitting error, the discussion of Figure 6.9 shows that the lattice constants of

solid-solution α′′ predicted by the fitted potential agree well with experiment.

The evolution of martensite phases in β or near-β titanium alloys is important to

their morphology and mechanical behavior. The hcp-Ti α phase becomes distorted

when alloying with β-stabilizing elements, eventually leading to the α′′ orthorhombic

phase. This distortion follows the same shuffle mechanism employed in Figure 6.8,

and the position of the minimum-energy state changes with niobium content. We

now investigate this deformation in solid-solution Ti-Nb.
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Figure 6.9: Evolution of the 0 K equilibrium structure with niobium in solid solution
as calculated with GMEAM. The four-atom orthorhombic hcp unit cell is repeated
10×10×5 (2,000 total atoms) and atomic decoration is randomly assigned to match
the niobium concentration shown on the right-hand side of the curves. The horizontal
axis represents displacement in angstroms as alternating basal planes are shifted along
[11̄00]α. The displacement for the completed transformation to bcc is labeled on the
right for pure Ti; because the lattice parameter b increases with Nb content, other
curves slightly exceed this value. At each point the simulation cell parameters are
relaxed to zero pressure. Curves are colored according to the lowest energy structure
along the transition path where black is α (hcp), purple is α′, red is α′′ and blue
is β (bcc). Cell dimensions from this structure at 18 concentrations are plotted in
the inset with phase boundaries. Only select stoichiometries are plotted in the main
figure for clarity. Niobium induces a strain in the hexagonal structure, destabilizing it
in favor of α′ by ∼7.5 at.% Nb, α′′ between ∼12.5 and ∼35 at.% Nb, and bcc beyond
35 at.% Nb.

Figure 6.9 reports the GMEAM α↔ β transition energy as a function of displace-

ment in the [11̄00]α direction of alternating basal planes (0002)α for various niobium

153



concentrations (labeled on the curves) at 0 K. At each displacement, the cell is re-

laxed to zero pressure. The equivalent four-atom orthorhombic cell (bottom left)

lattice constants of the lowest-energy structure for 18 concentrations are plotted in

the inset. For clarity, only select concentrations are plotted in the main figure. At

10 at.% Nb, no significant minimum develops with respect to the shifting of atomic

planes but a slight change in lattice constants a and b indicates a breaking of the

perfect hexagonal symmetry, consistent with the formation of an α′ martensite phase

[51]. With a concentration 20 at.% niobium, a partial displacement of (0002)α planes

is energetically favorable by about 12 meV/atom. This local minimum represents the

orthorhombic α′′ phase, which is the equilibrium structure up to 35 at.% Nb. Lattice

constants of this solid solution α′′ structure at 25 at.% Nb are a = 3.15 Å, b = 4.84

Å and c = 4.58 Å, very close the experimental values of a = 3.19 Å, b = 4.80 Å and

c = 4.64 Å reported by Sun et al. [136]. Beyond 35 at.%, bcc is the lowest energy

structure. At this point niobium has completely stabilized the bcc phase as can be

see by the lattice parameters where c = b = a
√

2.

The shape-memory effect (SME) is known to exist in binary Ti-Nb alloys [157,

158], gum metals [26, 23] and other titanium and Ti-Nb alloys [51, 159, 36]. The SME

is characterized by a recovery of initial geometric shape after deformation at a low

temperature and subsequent heating. The physical processes that underly this effect

are stress- and temperature-induced martensitic phase transitions. Upon straining,

a stress-induced transition grows the martensite domains. Subsequent heating of

the material induces a reverse transition wherein martensite domains are destroyed

and the accumulated stress and strain are recovered. Below, we demonstrate the

ability of the fitted GMEAM potential to model the stress- and temperature-induced

martensitic transitions that underly the SME in Ti-25 at.%Nb.
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Figure 6.10: 364,500-atom NPT simulation of stress- and temperature-induced
martensitic transitions in Ti-25 at.%Nb using the fitted GMEAM potential with a
timestep of 1 fs. (a) shows the cell microstructure at 150 K and 0 GPa with atoms
colored by local crystal structure. Grey atoms are identified as bcc and red atoms as
α′′. (b) shows an increase in α′′ martensite upon shearing. (c) shows that a subse-
quent heating of the cell to 800 K destroys the martensite domains, releasing most of
the accumulated shear stress as shown in (e). Martensite domains grow upon cooling
(d), but account only for 5.8% of atoms, compared to 20.9% in the pre-cycle struc-
ture (f). Structure identification is done by polyhedral template-matching [160] as
implemented in the current version of ovito [43, 44].
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Figure 6.10 displays results of a 364,500-atom constant-NPT simulation of stress-

and temperature-induced martensitic transitions in Ti-25 at%Nb using the fitted

GMEAM potential with a timestep of 1 fs. The simulation cell is a 45×45×45 su-

percell of the four-atom orthorhombic hcp cell. Atoms are assigned chemical species

randomly, and the cell is first equilibrated at 150 K and 1 atm pressure. At the top

of the figure, cross-sections of the cell are shown at significant points in the simula-

tion. The plane of the page corresponds to (001)α′′ or (110)β. Atoms are assigned a

color based on local crystal structure as determined by polyhedral template-matching

(PTM) [160] as implemented in ovito [43, 44]. Grey atoms are austenite (β) and red

atoms are martensite (α′′). Note that the PTM method does not distinguish between

α, α′ or α′′, but the martensite structure is referred to as α′′ consistent with the

stoichiometry used here and the results presented in Figure 6.9. The middle panel

(e) plots shear stress and simulation temperature as functions of time and the bot-

tom panel (f) shows the fraction of atoms identified as martensite and austenite as

functions of time.

Between 200 and 400 ps, a shear strain of 5% is applied to the [100]β(01̄1)β shear

system. As a result, the fraction of atoms in α′′ domains increases by 15%. A total of

4.5 GPa of shear stress is accumulated by the cell, and this holds constant between

400 and 600 ps. The simulation cell is heated from 150 K to 800 K between 600 and

800 ps. As can be seen in the bottom panel, martensite domains begin transforming

to austenite (bcc) immediately upon heating. By 640 ps, when the temperature

is roughly 410 K, the β phase has been saturated at about 95% coinciding with a

nearly-complete release of the accumulated shear stress. This gives us an estimate

of 410 K for the austenite finish temperature predicted by GMEAM, consistent with

the experimental value of 390 K reported by Al-Zain et al. [158]. Cooling the cell

does not cause austenite to revert to martensite until the temperature reaches about
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300 K, and the recovered volume fraction of martensite is only 5.8%. This is not a

complete cycle of the shape-memory effect but nonetheless demonstrates the ability of

the fitted potential to model stress- and temperature-induced martensitic transitions

in Ti-25 at.%Nb.

In summary, the ω ↔ β and α↔ β transitions in Ti-Nb alloys have been examined

using the fitted GMEAM potential. The potential was shown to be consistent with

present and past DFT calculations, and was used to investigate the effect of alloying

on these transitions. The ω ↔ β transition in solid solution was found to lack

the 5 meV/atom barrier present in Figure 6.6. The α phase was found to distort

when alloyed with niobium, first breaking perfect hexagonal symmetry to form α′ at

∼7.5 at.%, then becoming the orthorhombic α′′ phase between ∼12.5 and ∼35 at.%.

The stress- and temperature-induced martensitic transitions between α′′ and β that

underly the SME in Ti-Nb alloys were demonstrated by NPT simulation.
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Figure 6.11: Core structure of a 1/2[111] screw dislocation in (a) pure niobium and (b)
and (c) two configurations of Nb95Ti5. Traces of planes, which are labeled in (a), cross
at the origin of the elastic solution. Only screw components (displacements parallel
to the burgers vector) are plotted. Niobium atoms are shown in black and titanium
atoms are shown in white. GMEAM predicts a symmetric core in pure niobium, with
little effect on the structure from the presence of titanium solute atoms.
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6.4 Dislocation Core Structures

We consider screw dislocations in bcc Nb and hcp Ti and analyze the effect of al-

loying on the core structure. In both cases a large supercell with periodicity along

the dislocation line and fixed boundary conditions in the other two directions is em-

ployed. Atoms are displaced in this direction according to the strain field solution

from linear elasticity, uz = (b/2π)tan−1y/x, as described in Hirth and Lothe [161].

Fixing atoms at the boundary ensures that the relaxed cell satisfies the long-range

boundary conditions imposed by the dislocation. We have employed this method in

our previous work on niobium [86], molybdenum [88] and tungsten [98], where more

information is available.

Figure 6.11 contains differential displacement maps of a 1/2[111] screw dislocation

in (a) bcc Nb, (b) and (c) two configurations of a bcc Nb-5 at.%Ti alloy. Traces of

atomic planes, labeled in part (a), cross at the origin of the elastic solution. The simu-

lation cell has directions [12̄1], [1̄01], and [111] along x, y, and z repeated 114×190×8

for a total of 1,042,109 atoms with 5 at.% Ti in solid solution. A cylindrical region

containing 435,168 atoms, concentric with the dislocation, is relaxed to obtain the

core structure. In pure Nb, only a single periodic unit is used along the z direction.

GMEAM predicts a symmetric core for pure niobium (a), which is found to be very

resilient to alloying with Ti in (b) and (c). Even when the titanium solute atom lies

on the central triad around the dislocation, as in (c), only slight distortion of the

symmetric core is observed. While the six-fold symmetry around the core is broken,

the core does not become a three-fold “degenerate” core such as that found for nio-

bium in Fellinger et al. [86]. The fitted potential thus predicts titanium solute atoms

to have little effect on the slip behavior of bcc niobium.
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Figure 6.12: Core structure of a 1/3[11̄20] screw dislocation in (a) pure titanium and
(b) and (c) two configurations of Ti95Nb5. Traces of planes, which are labeled in (a),
cross at the origin of the elastic solution. Only screw components (displacements
parallel to the burgers vector) are plotted. Partial dislocations are represented by
closed triads of atoms, shaded in red to guide the eye. Niobium atoms are shown
in black and titanium atoms are shown in white. The structure of this symmetric
core is consistent with previous DFT and MEAM calculations by Ghazisaeidi and
Trinkle as well as Tarrat et al. [152, 153]. The presence of Nb near the core breaks
the mirror symmetry and causes spreading, primarily into basal planes, but preserves
the dissociated structure.

160



Figure 6.12 shows differential displacement maps of a 1/3[12̄10] prismatic dislo-

cation in (a) hcp Ti and (b) and (c) two configurations of an hcp Ti-5 at.%Nb alloy.

In these maps, a closed triad of atoms represents a displacement of b/2, i.e. a partial

dislocation. These triads are shaded in red to guide the eye. Traces of atomic planes,

labeled in (a), cross at the origin of the elastic solution. The simulation cell has

directions [1̄100], [0001] and [12̄10] along x, y and z, repeated 155×144×8 for a total

of 714,240 atoms with 5 at.% Nb in solid solution. For the dislocation in pure Ti (a),

only a single periodic unit is used in the z direction. Of the possible locations for the

elastic origin, it is placed in the lower energy “mirror” configuration as determined by

previous ab initio studies [152, 153]. A cylindrical region containing 366,912 atoms,

concentric with the dislocation, is relaxed to obtain the core structure.

GMEAM predicts the dislocation to dissociate in the prismatic plane, separated

by an (easy) {011̄0}〈112̄0〉 stacking fault with symmetry across the basal, consistent

with DFT and MEAM results from Ghazisaeidi and Trinkle [152] and DFT results

of Tarrat et al. [153]. Sub-plots (b) and (c) are different (12̄10) cross-sections of the

same cell, and show significant distortion of the dissociated core structure relative to

that in pure titanium. In (b), the presence of Nb atoms near the elastic core causes a

spreading into the basal plane. The atoms causing this distortion are the closest solute

atoms to the elastic origin, but do not lie on either of the partial dislocation triads.

In (c), where niobium atoms are on and near the bottom partial in a pyramidal plane,

spreading is less pronounced. Solute atoms appear to have the most significant effect

when located near the elastic core on basal planes between the partial dislocations.

The fitted GMEAM potential predicts niobium solutes to have a more significant

effect on dislocation core structure in titanium than the converse. This is sensible

given that hcp Nb is roughly four times higher in formation energy than bcc Ti. The

fundamental structure of the dislocations is not affected at 5 at.% solute content in
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either alloy.

6.5 Summary

We present a GMEAM-like empirical potential for Ti-Nb alloys, fitted to data across

the range of concentrations but focused on martensitic transformations and multi-

phase properties of gum metal approximants near 25 at.% Nb. The fitted potential is

shown to be consistent with previous calculations and measurements of elastic con-

stants, thermal expansion, point defects, stacking faults and martensitic transitions.

We study the impact of alloying on the energetics of martensitic phase transition

pathways at 0 K. For the β to ω-Ti transition (Fig. 6.7), a lack of transition barrier in

contrast to the DFT results of Lai et al. [135] and the present work (Fig. 6.6), both

of which employed a G1 supercell, is found. The fitted GMEAM potential predicts a

distortion of the α martensite with niobium content, estimated by calculations along

the Burgers transformation pathway (Fig. 6.9), consistent with experiment. The α′′

structure is found to persist in solid solution until 40 at.% Nb at 0 K. Stress- and

temperature-induced transitions between β and α′′ which underly the shape-memory

effect in Ti-25 at.%Nb are demonstrated by NPT simulation (Fig. 6.10) in a cell with

a single β grain.

The effect of solute atoms, with concentrations of 5 at.%, on dislocation cores in

hcp-Ti and bcc-Nb is also examined. Symmetric cores of the 1
2
〈111〉 screw dislocation

in bcc-Nb (Fig. 6.11) are found to be mostly unaffected by titanium solutes, with

small amounts of distortion but no significant spreading or change of core structure.

The 1
3
〈11̄20〉 dislocation in hcp-Ti (Fig. 6.12), which dissociates in the prismatic

plane, is seen to spread primarily into basal planes depending on the location of

niobium solutes, but the dissociated structure is preserved.
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The fitted potential is suitable for the study of plastic deformation, martensitic

transitions, ω-phase formation, defect structures and their interplay in Ti-Nb alloys.
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Chapter 7:

Conclusions and Future Directions

This work has presented two robust empirical extensions of the modified embed-

ded atom formalism, parameterized by spline functions and force-matched to large

density-functional theory databases. The potentials have demonstrated accuracy in

a variety of static and dynamic material conditions including phase transitions and

plastic deformation. Such robust interatomic potentials are desirable to have for all

material systems but require a great deal of effort to develop.

Future development of MEAM-like empirical potentials will necessarily involve

large fitting databases and highly flexible models as employed in the present work.

The choice of model should be based on the complexity of the material under study,

but results presented here suggest that large databases produce highly transferable

potentials, even for a single-phase system such as tungsten.

The SW+MEAM model presented in Chapter 5 could be applied to other transi-

tion metals at high pressure, or possibly to lanthanide and actinide materials whose

many-phase nature requires great flexibility to model accurately. As was described by

Nicklas[94], additional Stillinger-Weber type terms can be added to the total energy,

without redundancy, to achieve greater model flexibility with the same formalism.
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The choice of model form for an alloy potential depends similarly on the com-

plexity of the material’s phase diagram. The GMEAM model presented in Chapter

6 was chosen for its flexibility. High flexibility was needed because of the number

of energetically-similar phases, but this form is unlikely to transfer easily to ternary

or quaternary alloy systems. The number of functions in GMEAM scales cubically

with the number of atomic species N as N [(N + 1)(N + 2)/2 + 2]. Thus for a ternary

system 36 functions would needed to be fit. For a quaternary alloy, the number would

be 68. One needs to generate enough consistent DFT data to properly saturate the

domains of all of these functions before development can even begin!

In principle one could limit the number of spline knots in each function in order to

reduce the data necessary to saturate their domains, but an easier starting point would

be a different formulation of MEAM for alloys. Zhang and Trinkle [162] developed a

MEAM potential for the binary Ti-O species in which the triplet term does not depend

on the central atom as in the present GMEAM formulation. This is most consistent

with the original inspiration of the Stott-Zaremba corollary. Another option is to

have the angular function depend only on the central atom and not all three species

in a triplet. Both of these forms only scale quadratically with N , and thus offer a

simpler starting point for the development of ternary or quaternary alloy potentials.

Roughly 2 million CPU-hours were spent developing the Ti-Nb potential of the

present work. Given a similar number of spline knots per function, a commensu-

rate database size and comparable parallelization speedups, the necessary CPU-hours

for developing spline-based potentials can be estimated as a function of constituent

species. Figure 7 plots these development times for up to five-species alloys.

In summary, the state-of-the-art empirical potentials developed in this work pro-

vide more accurate descriptions of two technologically important metals. Interatomic

potentials will remain an important tool in materials development for the foreseeable
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future, and an approximate roadmap for the development of similarly complex models

has been presented.

Figure 7.1: Estimated number of CPU hours for developing embedded-atom type
potentials for alloys. MEAM here is taken to be the form proposed by Zhang and
Trinkle [162]. Estimation is done assuming equivalent computational efficiency and
commensurate databases and spline parameterizations. Values are computed based
on the number of functions in each model. Trends are quadratic for EAM and MEAM
but cubic for GMEAM, emphasizing the need to use simpler model formulations for
ternary and higher compounds.
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